RESUMEN
Muscle spindle abundance is highly variable in vertebrates, but the functional determinants of this variation are unclear. Recent work has shown that human leg muscles with the lowest abundance of muscle spindles primarily function to lengthen and absorb energy, while muscles with a greater spindle abundance perform active-stretch-shorten cycles with no net work, suggesting that muscle spindle abundance may be underpinned by muscle function. Compared with other mammalian muscles, the digastric muscle contains the lowest abundance of muscle spindles and, therefore, might be expected to generate substantial negative work. However, it is widely hypothesised that as a jaw-opener (anatomically) the digastric muscle would primarily function to depress the jaw, and consequently do positive work. Through a combination of X-ray reconstruction of moving morphology (XROMM), electromyography and fluoromicrometry, we characterised the 3D kinematics of the jaw and digastric muscle during feeding in rabbits. Subsequently, the work loop technique was used to simulate in vivo muscle behaviour in situ, enabling muscle force to be quantified in relation to muscle strain and hence determine the muscle's function during mastication. When functioning on either the working or balancing side, the digastric muscle generates a large amount of positive work during jaw opening, and a large amount of negative work during jaw closing, on average producing a relatively small amount of net negative work. Our data therefore further support the hypothesis that muscle spindle abundance is linked to muscle function; specifically, muscles that absorb a relatively large amount of negative work have a low spindle abundance.
Asunto(s)
Electromiografía , Masticación , Animales , Conejos/fisiología , Masticación/fisiología , Fenómenos Biomecánicos , Músculos del Cuello/fisiología , Masculino , Maxilares/fisiología , FemeninoRESUMEN
Our current understanding of human gait is mostly based on studies using hard, level surfaces in a laboratory environment. However, humans navigate a wide range of different substrates every day, which incur varied demands on stability and efficiency. Several studies have shown that when walking on natural compliant substrates there is an increase in energy expenditure. However, these studies report variable changes to other aspects of gait such as muscle activity. Discrepancies between studies exist even within substrate types (e.g. sand), which suggests that relatively 'fine-scale' differences in substrate properties exert quantifiable influences on gait mechanics. In this study, we compared human walking mechanics on a range of sand substrates that vary in overall foot sinking depth. We demonstrated that variation in the overall sinking depth in sand was associated with statistically significant changes in joint angles and spatiotemporal variables in human walking but exerted relatively little influence on pendular energy recovery and muscle activations. Significant correlated changes between gait metrics were frequently recovered, suggesting a degree of coupled or mechanistic interaction in their variation within and across substrates. However, only walking speed (and its associated spatiotemporal variables) correlated frequently with absolute foot sinkage depth within individual sand substrates, but not across them. This suggests that a causative relationship between walking speed and foot sinkage depth within individual sand substates is not coupled with systematic changes in joint kinematics and muscle activity in the same way as is observed across sand substrates.
Asunto(s)
Pie , Marcha , Arena , Caminata , Humanos , Fenómenos Biomecánicos , Caminata/fisiología , Pie/fisiología , Adulto , Masculino , Femenino , Marcha/fisiología , Adulto Joven , Músculo Esquelético/fisiologíaRESUMEN
Humans and birds use very different running styles. Unlike humans, birds adopt "grounded running" at intermediate speeds-a running gait where at least one foot always maintains ground contact. Avian grounded running is a paradox: Animals usually minimize locomotor energy expenditure, but birds prefer grounded running despite incurring higher energy costs. Using predictive gait simulations of the emu (Dromaius novaehollandiae), we resolve this paradox by demonstrating that grounded running represents an optimal gait for birds, from both energetics and muscle excitations perspectives. Our virtual experiments decoupled effects of posture and tendon elasticity, biomechanically relevant anatomical features that cannot be isolated in real birds. The avian body plan prevents (near) vertical leg postures, making the running style used by humans impossible. Under this anatomical constraint, grounded running is optimal if the muscles produce the highest forces in crouched postures, as is true in most birds. Shared anatomical features suggest that, as a behavior, avian grounded running first evolved within non-avian dinosaurs.
Asunto(s)
Aves , Carrera , Animales , Carrera/fisiología , Fenómenos Biomecánicos , Aves/fisiología , Aves/anatomía & histología , Músculo Esquelético/fisiología , Marcha/fisiología , Modelos Biológicos , Locomoción/fisiología , Simulación por Computador , Postura/fisiologíaRESUMEN
Musculoskeletal simulations can provide insights into the underlying mechanisms that govern animal locomotion. In this study, we describe the development of a new musculoskeletal model of the horse, and to our knowledge present the first fully muscle-driven, predictive simulations of equine locomotion. Our goal was to simulate a model that captures only the gross musculoskeletal structure of a horse, without specialized morphological features. We mostly present simulations acquired using feedforward control, without state feedback ("top-down control"). Without using kinematics or motion capture data as an input, we have simulated a variety of gaits that are commonly used by horses (walk, pace, trot, tölt, and collected gallop). We also found a selection of gaits that are not normally seen in horses (half bound, extended gallop, ambling). Due to the clinical relevance of the trot, we performed a tracking simulation that included empirical joint angle deviations in the cost function. To further demonstrate the flexibility of our model, we also present a simulation acquired using spinal feedback control, where muscle control signals are wholly determined by gait kinematics. Despite simplifications to the musculature, simulated footfalls and ground reaction forces followed empirical patterns. In the tracking simulation, kinematics improved with respect to the fully predictive simulations, and muscle activations showed a reasonable correspondence to electromyographic signals, although we did not predict any anticipatory firing of muscles. When sequentially increasing the target speed, our simulations spontaneously predicted walk-to-run transitions at the empirically determined speed. However, predicted stride lengths were too short over nearly the entire speed range unless explicitly prescribed in the controller, and we also did not recover spontaneous transitions to asymmetric gaits such as galloping. Taken together, our model performed adequately when simulating individual gaits, but our simulation workflow was not able to capture all aspects of gait selection. We point out certain aspects of our workflow that may have caused this, including anatomical simplifications and the use of massless Hill-type actuators. Our model is an extensible, generalized horse model, with considerable scope for adding anatomical complexity. This project is intended as a starting point for continual development of the model and code that we make available in extensible open-source formats.
Asunto(s)
Marcha , Locomoción , Modelos Biológicos , Músculo Esquelético , Animales , Caballos/fisiología , Fenómenos Biomecánicos , Locomoción/fisiología , Músculo Esquelético/fisiología , Marcha/fisiología , Simulación por Computador , Miembro Posterior/fisiologíaRESUMEN
A central concept of evolutionary biology, supported by broad scale allometric analyses, asserts that changing morphology should induce downstream changes in locomotor kinematics and energetics, and by inference selective fitness. However, if these mechanistic relationships exist at local intraspecific scales, where they could provide substrate for fundamental microevolutionary processes, is unknown. Here, analyses of selectively-bred duck breeds demonstrate that distinct body shapes incur kinematic shifts during walking, but these do not translate into differences in energetics. A combination of modular relationships between anatomical regions, and a trade-off between limb flexion and trunk pitching, are shown to homogenise potential functional differences between the breeds, accounting for this discrepancy between form and function. This complex interplay between morphology, motion and physiology indicates that understanding evolutionary links between the avian body plan and locomotor diversity requires studying locomotion as an integrated whole and not key anatomical innovations in isolation.
Asunto(s)
Patos , Animales , Fenómenos Biomecánicos , Patos/fisiología , Metabolismo Energético , Evolución Biológica , Locomoción/fisiología , Masculino , Caminata/fisiología , FemeninoRESUMEN
The subpectoral diverticulum (SPD) is an extension of the respiratory system in birds that is located between the primary muscles responsible for flapping the wing1,2. Here we survey the pulmonary apparatus in 68 avian species, and show that the SPD was present in virtually all of the soaring taxa investigated but absent in non-soarers. We find that this structure evolved independently with soaring flight at least seven times, which indicates that the diverticulum might have a functional and adaptive relationship with this flight style. Using the soaring hawks Buteo jamaicensis and Buteo swainsoni as models, we show that the SPD is not integral for ventilation, that an inflated SPD can increase the moment arm of cranial parts of the pectoralis, and that pectoralis muscle fascicles are significantly shorter in soaring hawks than in non-soaring birds. This coupling of an SPD-mediated increase in pectoralis leverage with force-specialized muscle architecture produces a pneumatic system that is adapted for the isometric contractile conditions expected in soaring flight. The discovery of a mechanical role for the respiratory system in avian locomotion underscores the functional complexity and heterogeneity of this organ system, and suggests that pulmonary diverticula are likely to have other undiscovered secondary functions. These data provide a mechanistic explanation for the repeated appearance of the SPD in soaring lineages and show that the respiratory system can be co-opted to provide biomechanical solutions to the challenges of flight and thereby influence the evolution of avian volancy.
Asunto(s)
Vuelo Animal , Halcones , Respiración , Sistema Respiratorio , Alas de Animales , Animales , Evolución Biológica , Fenómenos Biomecánicos/fisiología , Vuelo Animal/fisiología , Halcones/anatomía & histología , Halcones/clasificación , Halcones/fisiología , Pulmón/anatomía & histología , Pulmón/fisiología , Modelos Biológicos , Músculo Esquelético/anatomía & histología , Músculo Esquelético/fisiología , Sistema Respiratorio/anatomía & histología , Alas de Animales/fisiología , Alas de Animales/anatomía & histología , Masculino , FemeninoRESUMEN
Surgical intervention is a common option for the treatment of wrist joint arthritis and traumatic wrist injury. Whether this surgery is arthrodesis or a motion preserving procedure such as arthroplasty, wrist joint biomechanics are inevitably altered. To evaluate effects of surgery on parameters such as range of motion, efficiency and carpal kinematics, repeatable and controlled motion of cadaveric specimens is required. This study describes the development of a device that enables cadaveric wrist motion to be simulated before and after motion preserving surgery in a highly controlled manner. The simulator achieves joint motion through the application of predetermined displacements to the five major tendons of the wrist, and records tendon forces. A pilot experiment using six wrists aimed to evaluate its accuracy and reproducibility. Biplanar X-ray videoradiography (BPVR) and X-Ray Reconstruction of Moving Morphology (XROMM) were used to measure overall wrist angles before and after total wrist arthroplasty. The simulator was able to produce flexion, extension, radioulnar deviation, dart thrower's motion and circumduction within previously reported functional ranges of motion. Pre- and post-surgical wrist angles did not significantly differ. Intra-specimen motion trials were repeatable; root mean square errors between individual trials and average wrist angle and tendon force profiles were below 1° and 2 N respectively. Inter-specimen variation was higher, likely due to anatomical variation and lack of wrist position feedback. In conclusion, combining repeatable intra-specimen cadaveric motion simulation with BPVR and XROMM can be used to determine potential effects of motion preserving surgeries on wrist range of motion and biomechanics.
Asunto(s)
Cadáver , Rango del Movimiento Articular , Articulación de la Muñeca , Humanos , Articulación de la Muñeca/cirugía , Articulación de la Muñeca/diagnóstico por imagen , Articulación de la Muñeca/fisiología , Articulación de la Muñeca/anatomía & histología , Fenómenos Biomecánicos , Radiografía/métodos , Masculino , Anciano , Reproducibilidad de los Resultados , Tendones/cirugía , Tendones/diagnóstico por imagen , Tendones/fisiología , Tendones/anatomía & histología , FemeninoRESUMEN
The material properties of some bones are known to vary with anatomical location, orientation and position within the bone (e.g., cortical and trabecular bone). Details of the heterogeneity and anisotropy of bone is an important consideration for biomechanical studies that apply techniques such as finite element analysis, as the outcomes will be influenced by the choice of material properties used. Datasets detailing the regional variation of material properties in the bones of the skull are sparse, leaving many finite element analyses of skulls no choice but to employ homogeneous, isotropic material properties, often using data from a different species to the one under investigation. Due to the growing significance of investigating the cranial biomechanics of the rabbit in basic science and clinical research, this study used nanoindentation to measure the elastic modulus of cortical and trabecular bone throughout the skull. The elastic moduli of cortical bone measured in the mediolateral and ventrodorsal direction were found to decrease posteriorly through the skull, while it was evenly distributed when measured in the anteroposterior direction. Furthermore, statistical tests showed that the variation of elastic moduli between separate regions (anterior, middle and posterior) of the skull were significantly different in cortical bone, but was not in trabecular bone. Elastic moduli measured in different orthotropic planes were also significantly different, with the moduli measured in the mediolateral direction consistently lower than that measured in either the anteroposterior or ventrodorsal direction. These findings demonstrate the significance of regional and directional variation in cortical bone elastic modulus, and therefore material properties in finite element models of the skull, particularly those of the rabbit, should consider the heterogeneous and orthotropic properties of skull bone when possible.
Asunto(s)
Hueso Esponjoso , Cráneo , Animales , Conejos , Elasticidad , Módulo de Elasticidad , Cabeza , Análisis de Elementos Finitos , Fenómenos BiomecánicosRESUMEN
OBJECTIVE: To use a previously validated veterinary clinical examination sheet, Liverpool Osteoarthritis in Dogs (LOAD) questionnaire, combined with kinetic and kinematic gait analysis in dogs with/without mobility problems to demonstrate the capacity of a novel clinical metrology instrument ("GenPup-M") to detect canine mobility impairments. DESIGN: Quantitative study. ANIMALS: 62 dogs (31 with mobility impairments and 31 without mobility impairments). PROCEDURE: The dogs' clinical history was obtained from owners and all dogs underwent a validated orthopaedic clinical examination. Mobility impairments were diagnosed in the mobility impaired group based on clinical history and orthopaedic examination. Owners were asked to complete GenPup-M along with a previously validated mobility questionnaire (Liverpool Osteoarthritis in Dogs (LOAD)) to identify construct validity. As a test of criterion validity, the correlation between instrument scores and the overall clinical examination scores, along with force-platform obtained peak vertical forces (PVF) were calculated. GenPup-M underwent internal consistency and factor analysis. Spatiotemporal parameters were calculated for dogs with/without mobility impairments to define the gait differences between these two groups. RESULTS: Principal Component Analysis identified GenPup-M had two components with Eigenvalues >1 ("stiffness/ease of movement" and "willingness to be active/exercise"). Cronbach's α was used to test internal consistency of GenPup-M and was found to be "good" (0.87). There was a strong, positive correlation between GenPup-M and LOAD responses (r2 = 0.69, p<0.001) highlighting construct validity. Criterion validity was also shown when comparing GenPup-M to clinical examination scores (r2 = 0.74, p<0.001) and PVF (r2 = 0.43, p<0.001). Quantitative canine gait analysis showed that there were statistically significant differences between peak vertical forces (PVF) of mobility impaired and non-mobility impaired dogs (p<0.05). Analyses of PVF showed that non-mobility impaired dogs more evenly distributed their weight across all thoracic and pelvic limbs when compared to mobility impaired dogs. There were also consistent findings that mobility impaired dogs moved slower than non-mobility impaired dogs. CONCLUSION AND CLINICAL RELEVANCE: GenPup-M is a clinical metrology instrument (CMI) that can be completed by dog owners to detect all mobility impairments, including those that are early in onset, indicating the versatility of GenPup-M to assess dogs with and without mobility impairments. Results of the study found that GenPup-M positively correlated with all three objective measures of canine mobility and consequently showed criterion and construct validity. Owner-reported CMIs such as GenPup-M allow non-invasive scoring systems which veterinary surgeons and owners can use to allow communication and longitudinal assessment of a dog's mobility. It is anticipated that GenPup-M will be used by owners at yearly vaccinations/health checks, allowing identification of any subtle mobility changes, and enabling early intervention.
Asunto(s)
Enfermedades de los Perros , Osteoartritis , Perros , Animales , Enfermedades de los Perros/diagnóstico , Osteoartritis/veterinaria , Encuestas y Cuestionarios , Marcha , Dimensión del Dolor/veterinariaRESUMEN
Even "healthy" muscle ageing is often associated with substantial changes in muscle form and function and can lead to increased injury risks and significant negative impacts on quality of life. However, the impacts of healthy muscle ageing on the fibre architecture and microstructure of different muscles and muscle groups throughout the lower limb, and how these are related to their functional capabilities, are not fully understood. Here, a previously established framework of magnetic resonance and diffusion tensor imaging was used to measure the muscle volumes, intramuscular fat, fibre lengths and physiological cross-sectional areas of 12 lower limb muscles in a cohort of healthily aged individuals, which were compared to the same data from a young population. Maximum muscle forces were also measured from an isokinetic dynamometer. The more substantial interpopulation differences in architecture and functional performance were located within the knee extensor muscles, while the aged muscles were also more heterogeneous in muscle fibre type and atrophy. The relationships between architecture and muscle strength were also more significant in the knee extensors compared to other functional groups. These data highlight the importance of the knee extensors as a potential focus for interventions to negate the impacts of muscle ageing.
RESUMEN
It is accepted that non-avian theropod dinosaurs, with their long muscular tails and small forelimbs, had a centre-of-mass close to the hip, while extant birds, with their reduced tails and enlarged wings have their mass centred more cranially. Transition between these states is considered crucial to two key innovations in the avian locomotor system: crouched bipedalism and powered flight. Here we use image-based models to challenge this dichotomy. Rather than a phylogenetic distinction between 'dinosaurian' and 'avian' conditions, we find terrestrial versus volant taxa occupy distinct regions of centre-of-mass morphospace consistent with the disparate demands of terrestrial bipedalism and flight. We track this decoupled evolution of body shape and mass distribution through bird evolution, including the origin of centre-of-mass positions more advantageous for flight and major reversions coincident with terrestriality. We recover modularity in the evolution of limb proportions and centre-of-mass that suggests fully crouched bipedalism evolved after powered flight.
Asunto(s)
Evolución Biológica , Dinosaurios , Animales , Filogenia , Somatotipos , Aves , Dinosaurios/anatomía & histología , FósilesRESUMEN
The secondary evolution of quadrupedality from bipedal ancestry is a rare evolutionary transition in tetrapods yet occurred convergently at least three times within ornithischian dinosaurs. Despite convergently evolving quadrupedal gait, ornithischians exhibited variable anatomy, particularly in the forelimbs, which underwent a major functional change from assisting in foraging and feeding in bipeds to becoming principal weight-bearing components of the locomotor system in quadrupeds. Here, we use three-dimensional multi-body dynamics models to demonstrate quantitatively that different quadrupedal ornithischian clades evolved distinct forelimb musculature, particularly around the shoulder. We find that major differences in glenohumeral abduction-adduction and long axis rotation muscle leverages were key drivers of mechanical disparity, thereby refuting previous hypotheses about functional convergence in major clades. Elbow muscle leverages were also disparate across the major ornithischian lineages, although high elbow extension muscle leverages were convergent between most quadrupeds. Unlike in ornithischian hind limbs, where differences are more closely tied to functional similarity than phylogenetic relatedness, mechanical disparity in ornithischian forelimbs appears to have been shaped primarily by phylogenetic constraints. Differences in ancestral bipedal taxa within each clade may have resulted in disparate ecomorphological constraints on the evolutionary pathways driving divergence in their quadrupedal descendants.
Asunto(s)
Dinosaurios , Animales , Filogenia , Miembro Anterior , Miembro Posterior , MúsculosRESUMEN
Across the human body, skeletal muscles have a broad range of biomechanical roles that employ complex proprioceptive control strategies to successfully execute a desired movement. This information is derived from peripherally located sensory apparatus, the muscle spindle and Golgi tendon organs. The abundance of these sensory organs, particularly muscle spindles, is known to differ considerably across individual muscles. Here we present a comprehensive data set of 119 muscles across the human body including architectural properties (muscle fibre length, mass, pennation angle and physiological cross-sectional area) and statistically test their relationships with absolute spindle number and relative spindle abundance (the residual value of the linear regression of the log-transformed spindle number and muscle mass). These data highlight a significant positive relationship between muscle spindle number and fibre length, emphasising the importance of fibre length as an input into the central nervous system. However, there appears to be no relationship between muscles architecturally optimised to function as displacement specialists and their provision of muscle spindles. Additionally, while there appears to be regional differences in muscle spindle abundance, independent of muscle mass and fibre length, our data provide no support for the hypothesis that muscle spindle abundance is related to anatomical specialisation.
Asunto(s)
Husos Musculares , Músculo Esquelético , Humanos , Husos Musculares/fisiología , Músculo Esquelético/fisiología , Mecanorreceptores/fisiología , Propiocepción/fisiología , Movimiento/fisiologíaRESUMEN
Walking on compliant substrates requires more energy than walking on hard substrates but the biomechanical factors that contribute to this increase are debated. Previous studies suggest various causative mechanical factors, including disruption to pendular energy recovery, increased muscle work, decreased muscle efficiency and increased gait variability. We test each of these hypotheses simultaneously by collecting a large kinematic and kinetic dataset of human walking on foams of differing thickness. This allowed us to systematically characterize changes in gait with substrate compliance, and, by combining data with mechanical substrate testing, drive the very first subject-specific computer simulations of human locomotion on compliant substrates to estimate the internal kinetic demands on the musculoskeletal system. Negative changes to pendular energy exchange or ankle mechanics are not supported by our analyses. Instead we find that the mechanistic causes of increased energetic costs on compliant substrates are more complex than captured by any single previous hypothesis. We present a model in which elevated activity and mechanical work by muscles crossing the hip and knee are required to support the changes in joint (greater excursion and maximum flexion) and spatio-temporal kinematics (longer stride lengths, stride times and stance times, and duty factors) on compliant substrates.
Asunto(s)
Marcha , Caminata , Humanos , Cinética , Locomoción , Articulación del TobilloRESUMEN
Knee joint ligaments provide stability to the joint by preventing excessive movement. There has been no systematic effort to study the effect of OA and ageing on the mechanical properties of the four major human knee ligaments. This study aims to collate data on the material properties of the anterior (ACL) and posterior (PCL) cruciate ligaments, medial (MCL) and lateral (LCL) collateral ligaments. Bone-ligament-bone specimens from twelve cadaveric human knee joints were extracted for this study. The cadaveric knee joints were previously collected to study ageing and OA on bone and cartilage material properties; therefore, combining our previous bone and cartilage data with the new ligament data from this study will facilitate subject-specific whole-joint modelling studies. The bone-ligament-bone specimens were tested under tensile loading to failure, determining material parameters including yield and ultimate (failure) stress and strain, secant modulus, tangent modulus, and stiffness. There were significant negative correlations between age and ACL yield stress (p = 0.03), ACL failure stress (p = 0.02), PCL secant (p = 0.02) and tangent (p = 0.02) modulus, and LCL stiffness (p = 0.046). Significant negative correlations were also found between OA grades and ACL yield stress (p = 0.02) and strain (p = 0.03), and LCL failure stress (p = 0.048). However, changes in age or OA grade did not show a statistically significant correlation with the MCL tensile parameters. Due to the small sample size, the combined effect of age and the presence of OA could not be statistically derived. This research is the first to report tensile properties of the four major human knee ligaments from a diverse demographic. When combined with our previous findings on bone and cartilage for the same twelve knee cadavers, the current ligament study supports the conceptualisation of OA as a whole-joint disease that impairs the integrity of many peri-articular tissues within the knee. The subject-specific data pool consisting of the material properties of the four major knee ligaments, subchondral and trabecular bones and articular cartilage will advance knee joint finite element models.
RESUMEN
Body size and shape play fundamental roles in organismal function and it is expected that animals may possess body proportions that are well-suited to their ecological niche. Tetrapods exhibit a diverse array of body shapes, but to date this diversity in body proportions and its relationship to ecology have not been systematically quantified. Using whole-body skeletal models of 410 extinct and extant tetrapods, we show that allometric relationships vary across individual body segments thereby yielding changes in overall body shape as size increases. However, we also find statistical support for quadratic relationships indicative of differential scaling in small-medium versus large animals. Comparisons of locomotor and dietary groups highlight key differences in body proportions that may mechanistically underlie occupation of major ecological niches. Our results emphasise the pivotal role of body proportions in the broad-scale ecological diversity of tetrapods.
Asunto(s)
Evolución Biológica , Ecología , Animales , Tamaño CorporalRESUMEN
Muscle spindle abundance is highly variable within and across species, but we currently lack any clear picture of the mechanistic causes or consequences of this variation. Previous use of spindle abundance as a correlate for muscle function implies a mechanical underpinning to this variation, but these ideas have not been tested. Herein, we use integrated medical imaging and subject-specific musculoskeletal models to investigate the relationship between spindle abundance, muscle architecture and in vivo muscle behaviour in the human locomotor system. These analyses indicate that muscle spindle number is tightly correlated with muscle fascicle length, absolute fascicle length change, velocity of fibre lengthening and active muscle forces during walking. Novel correlations between functional indices and spindle abundance are also recovered, where muscles with a high abundance predominantly function as springs, compared to those with a lower abundance mostly functioning as brakes during walking. These data demonstrate that muscle fibre length, lengthening velocity and fibre force are key physiological signals to the central nervous system and its modulation of locomotion, and that muscle spindle abundance may be tightly correlated to how a muscle generates work. These insights may be combined with neuromechanics and robotic studies of motor control to help further tease apart the functional drivers of muscle spindle composition.
Asunto(s)
Husos Musculares , Músculo Esquelético , Humanos , Locomoción , Fibras Musculares Esqueléticas/fisiología , Husos Musculares/fisiología , Músculo Esquelético/fisiología , Caminata/fisiologíaRESUMEN
The size and arrangement of fibres play a determinate role in the kinetic and energetic performance of muscles. Extrapolations between fibre architecture and performance underpin our understanding of how muscles function and how they are adapted to power specific motions within and across species. Here we provide a synopsis of how this 'fibre to function' paradigm has been applied to understand muscle design, performance and adaptation in animals. Our review highlights the widespread application of the fibre to function paradigm across a diverse breadth of biological disciplines but also reveals a potential and highly prevalent limitation running through past studies. Specifically, we find that quantification of muscle architectural properties is almost universally based on an extremely small number of fibre measurements. Despite the volume of research into muscle properties, across a diverse breadth of research disciplines, the fundamental assumption that a small proportion of fibre measurements can accurately represent the architectural properties of a muscle has never been quantitatively tested. Subsequently, we use a combination of medical imaging, statistical analysis, and physics-based computer simulation to address this issue for the first time. By combining diffusion tensor imaging (DTI) and deterministic fibre tractography we generated a large number of fibre measurements (>3000) rapidly for individual human lower limb muscles. Through statistical subsampling simulations of these measurements, we demonstrate that analysing a small number of fibres (n < 25) typically used in previous studies may lead to extremely large errors in the characterisation of overall muscle architectural properties such as mean fibre length and physiological cross-sectional area. Through dynamic musculoskeletal simulations of human walking and jumping, we demonstrate that recovered errors in fibre architecture characterisation have significant implications for quantitative predictions of in-vivo dynamics and muscle fibre function within a species. Furthermore, by applying data-subsampling simulations to comparisons of muscle function in humans and chimpanzees, we demonstrate that error magnitudes significantly impact both qualitative and quantitative assessment of muscle specialisation, potentially generating highly erroneous conclusions about the absolute and relative adaption of muscles across species and evolutionary transitions. Our findings have profound implications for how a broad diversity of research fields quantify muscle architecture and interpret muscle function.
Asunto(s)
Imagen de Difusión Tensora , Carrera , Animales , Simulación por Computador , Imagen de Difusión Tensora/métodos , Fibras Musculares Esqueléticas/fisiología , Músculo Esquelético/fisiologíaRESUMEN
Hip flexor musculature was instrumental in the evolution of hominin bipedal gait and in endurance running for hunting in the genus Homo. The iliacus and psoas major muscles were historically considered to have separate tendons with different insertions on the lesser trochanter. However, in the early 20th century, it became "common knowledge" that the two muscles insert together on the lesser trochanter as the "iliopsoas" tendon. We revisited the findings of early anatomists and tested the more recent paradigm of a common "iliopsoas" tendon based on dissections of hips and their associated musculature (n = 17). We rediscovered that the tendon of the psoas muscle inserts only into a crest running from the superior to anterior aspect of the lesser trochanter, separate from the iliacus. The iliacus inserts fleshly into the anterior portion of the lesser trochanter and into an inferior crest extending from it. We developed 3D multibody dynamics biomechanical models for: (a) the conjoint "iliopsoas" tendon hypothesis and (b) the separate insertion hypothesis. We show that the conjoint model underestimates the iliacus' capacity to generate hip flexion relative to the separate insertion model. Further work reevaluating the primate lower limb (including human) through dissection, needs to be performed to develop those datasets for reconstructing anatomy in fossil hominins using the extant phylogenetic bracket approach, which is frequently used for tetrapods clades outside of paleoanthropology.