Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Front Immunol ; 15: 1292059, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38370404

RESUMEN

Background: Previous studies have demonstrated enhanced efficacy of vaccine formulations that incorporate the chemokine macrophage inflammatory protein 3α (MIP-3α) to direct vaccine antigens to immature dendritic cells. To address the reduction in vaccine efficacy associated with a mutation in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) mutants, we have examined the ability of receptor-binding domain vaccines incorporating MIP-3α to sustain higher concentrations of antibody when administered intramuscularly (IM) and to more effectively elicit lung T-cell responses when administered intranasally (IN). Methods: BALB/c mice aged 6-8 weeks were immunized intramuscularly or intranasally with DNA vaccine constructs consisting of the SARS-CoV-2 receptor-binding domain alone or fused to the chemokine MIP-3α. In a small-scale (n = 3/group) experiment, mice immunized IM with electroporation were followed up for serum antibody concentrations over a period of 1 year and for bronchoalveolar antibody levels at the termination of the study. Following IN immunization with unencapsulated plasmid DNA (n = 6/group), mice were evaluated at 11 weeks for serum antibody concentrations, quantities of T cells in the lungs, and IFN-γ- and TNF-α-expressing antigen-specific T cells in the lungs and spleen. Results: At 12 months postprimary vaccination, recipients of the IM vaccine incorporating MIP-3α had significantly, approximately threefold, higher serum antibody concentrations than recipients of the vaccine not incorporating MIP-3α. The area-under-the-curve analyses of the 12-month observation interval demonstrated significantly greater antibody concentrations over time in recipients of the MIP-3α vaccine formulation. At 12 months postprimary immunization, only recipients of the fusion vaccine had concentrations of serum-neutralizing activity deemed to be effective. After intranasal immunization, only recipients of the MIP-3α vaccine formulations developed T-cell responses in the lungs significantly above those of PBS controls. Low levels of serum antibody responses were obtained following IN immunization. Conclusion: Although requiring separate IM and IN immunizations for optimal immunization, incorporating MIP-3α in a SARS-CoV-2 vaccine construct demonstrated the potential of a stable and easily produced vaccine formulation to provide the extended antibody and T-cell responses that may be required for protection in the setting of emerging SARS-CoV-2 variants. Without electroporation, simple, uncoated plasmid DNA incorporating MIP-3α administered intranasally elicited lung T-cell responses.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Animales , Ratones , Formación de Anticuerpos , Quimiocinas , COVID-19/prevención & control , Vacunas contra la COVID-19/inmunología , ADN , Pulmón , SARS-CoV-2 , Linfocitos T
2.
Stem Cell Res Ther ; 13(1): 477, 2022 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-36114555

RESUMEN

BACKGROUND: Mesenchymal stem cells (MSCs) secrete paracrine factors and extracellular matrix proteins that contribute to their ability to support tissue healing and regeneration. Both the transcriptome and the secretome of MSCs can be altered by treating the cells with cytokines, but neither have been thoroughly investigated following treatment with the specific cytokine transforming growth factor (TGF)-ß2. METHODS: RNA-sequencing and western blotting were used to compare gene and protein expression between untreated and TGF-ß2-treated equine bone marrow-derived MSCs (BM-MSCs). A co-culture system was utilized to compare equine tenocyte migration during co-culture with untreated and TGF-ß2-treated BM-MSCs. RESULTS: TGF-ß2 treatment significantly upregulated gene expression of collagens, extracellular matrix molecules, and growth factors. Protein expression of collagen type I and tenascin-C was also confirmed to be upregulated in TGF-ß2-treated BM-MSCs compared to untreated BM-MSCs. Both untreated and TGF-ß2-treated BM-MSCs increased tenocyte migration in vitro. CONCLUSIONS: Treating equine BM-MSCs with TGF-ß2 significantly increases production of paracrine factors and extracellular matrix molecules important for tendon healing and promotes the migration of tenocytes in vitro.


Asunto(s)
Células Madre Mesenquimatosas , Factor de Crecimiento Transformador beta2 , Animales , Médula Ósea/metabolismo , Colágeno Tipo I/metabolismo , Citocinas/metabolismo , Caballos , Células Madre Mesenquimatosas/metabolismo , Comunicación Paracrina , ARN/metabolismo , Tenascina/genética , Tenascina/metabolismo , Tendones/metabolismo , Factor de Crecimiento Transformador beta2/genética , Factores de Crecimiento Transformadores/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...