Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-38766111

RESUMEN

The abundant nuclear protein hnRNP U interacts with a broad array of RNAs along with DNA and protein to regulate nuclear chromatin architecture. The RNA-binding activity is achieved via a disordered ~100 residue C-terminal RNA-binding domain (RBD) containing two distinct RGG/RG motifs. Although the RNA-binding capabilities of RGG/RG motifs have been widely reported, less is known about hnRNP U's RNA-binding selectivity. Furthermore, while it is well established that hnRNP U binds numerous nuclear RNAs, it remains unknown whether it selectively recognizes sequence or structural motifs in target RNAs. To address this question, we performed equilibrium binding assays using fluorescence anisotropy (FA) and electrophoretic mobility shift assays (EMSAs) to quantitatively assess the ability of human hnRNP U RBD to interact with segments of cellular RNAs identified from eCLIP data. These RNAs often, but not exclusively, contain poly-uridine or 5'-AGGGAG sequence motifs. Detailed binding analysis of several target RNAs reveal that the hnRNP U RBD binds RNA in a promiscuous manner with high affinity for a broad range of structured RNAs, but with little preference for any distinct sequence motif. In contrast, the isolated RGG/RG of hnRNP U motif exhibits a strong preference for G-quadruplexes, similar to that observed for other RGG motif bearing peptides. These data reveal that the hnRNP U RBD attenuates the RNA binding selectivity of its core RGG motifs to achieve an extensive RNA interactome. We propose that a critical role of RGG/RG motifs in RNA biology is to alter binding affinity or selectivity of adjacent RNA-binding domains.

2.
J Biol Chem ; 300(3): 105730, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38336293

RESUMEN

Riboswitches are broadly distributed regulatory elements most frequently found in the 5'-leader sequence of bacterial mRNAs that regulate gene expression in response to the binding of a small molecule effector. The occupancy status of the ligand-binding aptamer domain manipulates downstream information in the message that instructs the expression machinery. Currently, there are over 55 validated riboswitch classes, where each class is defined based on the identity of the ligand it binds and/or sequence and structure conservation patterns within the aptamer domain. This classification reflects an "aptamer-centric" perspective that dominates our understanding of riboswitches. In this review, we propose a conceptual framework that groups riboswitches based on the mechanism by which RNA manipulates information directly instructing the expression machinery. This scheme does not replace the established aptamer domain-based classification of riboswitches but rather serves to facilitate hypothesis-driven investigation of riboswitch regulatory mechanisms. Based on current bioinformatic, structural, and biochemical studies of a broad spectrum of riboswitches, we propose three major mechanistic groups: (1) "direct occlusion", (2) "interdomain docking", and (3) "strand exchange". We discuss the defining features of each group, present representative examples of riboswitches from each group, and illustrate how these RNAs couple small molecule binding to gene regulation. While mechanistic studies of the occlusion and docking groups have yielded compelling models for how these riboswitches function, much less is known about strand exchange processes. To conclude, we outline the limitations of our mechanism-based conceptual framework and discuss how critical information within riboswitch expression platforms can inform gene regulation.


Asunto(s)
Ligandos , ARN Mensajero , Riboswitch , Bacterias/genética , Bacterias/metabolismo , Riboswitch/genética , Aptámeros de Nucleótidos/química , Aptámeros de Nucleótidos/genética , Aptámeros de Nucleótidos/metabolismo , ARN Mensajero/química , ARN Mensajero/genética , ARN Mensajero/metabolismo , Regulación Bacteriana de la Expresión Génica
3.
Biochemistry ; 2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38329035

RESUMEN

Heterogeneous nuclear ribonucleoprotein U (hnRNP U) is a ubiquitously expressed protein that regulates chromatin architecture through its interactions with numerous DNA, protein, and RNA partners. The RNA-binding domain (RBD) of hnRNP U was previously mapped to an RGG/RG motif within its disordered C-terminal region, but little is understood about its binding mode and potential for selective RNA recognition. Analysis of publicly available hnRNP U enhanced UV cross-linking and immunoprecipitation (eCLIP) data identified high-confidence binding sites within human RNAs. We synthesized a set of diverse RNAs encompassing 11 of these identified cross-link sites for biochemical characterization using a combination of fluorescence anisotropy and electrophoretic mobility shift assays. These in vitro binding experiments with a rationally designed set of RNAs and hnRNP U domains revealed that the RGG/RG motif is a small part of a more expansive RBD that encompasses most of the disordered C-terminal region. This RBD contains a second, previously experimentally uncharacterized RGG/RG motif with RNA-binding properties comparable to those of the canonical RGG/RG motif. These RGG/RG motifs serve redundant functions, with neither serving as the primary RBD. While in isolation, each RGG/RG motif has modest affinity for RNA, together they significantly enhance the association of hnRNP U with RNA, enabling the binding of most of the designed RNA set with low to midnanomolar binding affinities. Identification and characterization of the complete hnRNP U RBD highlight the perils of a reductionist approach to defining biochemical activities in this system and pave the way for a detailed investigation of its RNA-binding specificity.

4.
bioRxiv ; 2023 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-37786719

RESUMEN

Heterogeneous nuclear ribonucleoprotein U (hnRNP U) is a ubiquitously expressed protein that regulates chromatin architecture through its interactions with numerous DNA, protein, and RNA partners. The RNA-binding domain (RBD) of hnRNP U was previously mapped to an RGG/RG element within its disordered C-terminal region, but little is understood about its binding mode and potential for selective RNA recognition. Analysis of publicly available hnRNP U enhanced UV crosslinking and immunoprecipitation (eCLIP) data identified high-confidence binding sites within human RNAs. We synthesized a set of diverse RNAs encompassing eleven of these identified crosslink sites for biochemical characterization using a combination of fluorescence anisotropy and electrophoretic mobility shift assays. These in vitro binding experiments with a rationally designed set of RNAs and hnRNP U domains revealed that the RGG/RG element is a small part of a more expansive RBD that encompasses most of the disordered C-terminal region. This RBD contains a second, previously experimentally uncharacterized RGG/RG element with RNA-binding properties comparable to the canonical RGG/RG element. These RGG/RG elements serve redundant functions, with neither serving as the primary RBD. While in isolation each RGG/RG element has modest affinity for RNA, together they significantly enhance the association of hnRNP U with RNA, enabling binding of most of the designed RNA set with low to mid-nanomolar binding affinities. Identification and characterization of the complete hnRNP U RBD highlights the perils of a reductionist approach to defining biochemical activities in this system and paves the way for a detailed investigation of its RNA-binding specificity.

5.
BMC Res Notes ; 16(1): 181, 2023 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-37608297

RESUMEN

OBJECTIVES: The glucocorticoid receptor (GR) is a well-studied, ligand-activated transcription factor and a common target of anti-inflammatory treatments. Recently, several studies have drawn attention the effects of binding of GR to RNA rather than DNA and the potential implications of this activity for GR function. The objective of our study was to further characterize the relationship between GR function and RNA binding by measuring changes in the glucocorticoid-driven transcriptome in the presence of a GR mutant that exhibited reduced RNA affinity. DATA DESCRIPTION: GR was activated in three cell lines containing GR constructs (GR-HaloTag). One of the cell lines contained a wild-type GR-HaloTag. Another contained GR-HaloTag with a mutation that reduced RNA affinity and slightly reduced DNA affinity. The third cell line contained GR-HaloTag with a mutation that only slightly reduced DNA affinity. All three cell lines were treated with dexamethasone, a GR agonist. RNA-seq samples were collected every hour for 3 h. Moreover, transcriptome quantification was accomplished via labeling of RNAs transcribed in the final hour of dexamethasone treatment using 4-thiouridine. These labeled RNAs were then purified and sequenced. This data set is the first of its kind for GR and contains valuable insights into the function of RNA binding by GR.


Asunto(s)
Receptores de Glucocorticoides , Transcriptoma , Receptores de Glucocorticoides/genética , Glucocorticoides/farmacología , ARN , Dexametasona/farmacología
6.
Sci Rep ; 13(1): 9385, 2023 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-37296231

RESUMEN

The glucocorticoid receptor (GR) is a ligand-activated transcription factor that regulates a suite of genes through direct binding of GR to specific DNA promoter elements. GR also interacts with RNA, but the function of this RNA-binding activity remains elusive. Current models speculate that RNA could repress the transcriptional activity of GR. To investigate the function of the GR-RNA interaction on GR's transcriptional activity, we generated cells that stably express a mutant of GR with reduced RNA binding affinity and treated the cells with the GR agonist dexamethasone. Changes in the dexamethasone-driven transcriptome were quantified using 4-thiouridine labeling of RNAs followed by high-throughput sequencing. We find that while many genes are unaffected, GR-RNA binding is repressive for specific subsets of genes in both dexamethasone-dependent and independent contexts. Genes that are dexamethasone-dependent are activated directly by chromatin-bound GR, suggesting a competition-based repression mechanism in which increasing local concentrations of RNA may compete with DNA for binding to GR at sites of transcription. Unexpectedly, genes that are dexamethasone-independent instead display a localization to specific chromosomal regions, which points to changes in chromatin accessibility or architecture. These results show that RNA binding plays a fundamental role in regulating GR function and highlights potential functions for transcription factor-RNA interactions.


Asunto(s)
Dexametasona , Receptores de Glucocorticoides , Receptores de Glucocorticoides/metabolismo , Activación Transcripcional , Dexametasona/farmacología , Dexametasona/metabolismo , Factores de Transcripción/metabolismo , Glucocorticoides/farmacología , Cromatina , ADN/metabolismo , ARN , Sitios de Unión
7.
J Mol Biol ; 435(10): 168070, 2023 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-37003469

RESUMEN

The architecture and folding of complex RNAs is governed by a limited set of highly recurrent structural motifs that form long-range tertiary interactions. One of these motifs is the T-loop, which was first identified in tRNA but is broadly distributed across biological RNAs. While the T-loop has been examined in detail in different biological contexts, the various receptors that it interacts with are not as well defined. In this study, we use a cell-based genetic screen in concert with bioinformatic analysis to examine three different, but related, T-loop receptor motifs found in the flavin mononucleotide (FMN) and cobalamin (Cbl) riboswitches. As a host for different T-loop receptors, we employed the env8 class-II Cbl riboswitch, an RNA that uses two T-loop motifs for both folding and supporting the ligand binding pocket. A set of libraries was created in which select nucleotides that participate in the T-loop/T-loop receptor (TL/TLR) interaction were fully randomized. Library members were screened for their ability to support Cbl-dependent expression of a reporter gene. While T-loops appear to be variable in sequence, we find that the functional sequence space is more restricted in the Cbl riboswitch, suggesting that TL/TLR interactions are context dependent. Our data reveal clear sequence signatures for the different types of receptor motifs that align with phylogenic analysis of these motifs in the FMN and Cbl riboswitches. Finally, our data suggest the functional contribution of various nucleobase-mediated long-range interactions within the riboswitch subclass of TL/TLR interactions that are distinct from those found in other RNAs.


Asunto(s)
ARN , Riboswitch , ARN/química , Riboswitch/genética , Conformación de Ácido Nucleico , Secuencia de Bases , ARN Bacteriano/química , Pliegue del ARN , Vitamina B 12/metabolismo
8.
ACS Chem Biol ; 18(5): 1136-1147, 2023 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-37094176

RESUMEN

RNA-targeting small-molecule therapeutics is an emerging field hindered by an incomplete understanding of the basic principles governing RNA-ligand interactions. One way to advance our knowledge in this area is to study model systems where these interactions are better understood, such as riboswitches. Riboswitches bind a wide array of small molecules with high affinity and selectivity, providing a wealth of information on how RNA recognizes ligands through diverse structures. The cobalamin-sensing riboswitch is a particularly useful model system, as similar sequences show highly specialized binding preferences for different biological forms of cobalamin. This riboswitch is also widely dispersed across bacteria and therefore holds strong potential as an antibiotic target. Many synthetic cobalamin forms have been developed for various purposes including therapeutics, but their interaction with cobalamin riboswitches is yet to be explored. In this study, we characterize the interactions of 11 cobalamin derivatives with three representative cobalamin riboswitches using in vitro binding experiments (both chemical footprinting and a fluorescence-based assay) and a cell-based reporter assay. The derivatives show productive interactions with two of the three riboswitches, demonstrating simultaneous plasticity and selectivity within these RNAs. The observed plasticity is partially achieved through a novel structural rearrangement within the ligand binding pocket, providing insight into how similar RNA structures can be targeted. As the derivatives also show in vivo functionality, they serve as several potential lead compounds for further drug development.


Asunto(s)
Fenómenos Bioquímicos , Riboswitch , Vitamina B 12/metabolismo , Ligandos , ARN , Conformación de Ácido Nucleico
9.
Wiley Interdiscip Rev RNA ; 14(5): e1778, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36646476

RESUMEN

Nucleic acid binding proteins regulate transcription, splicing, RNA stability, RNA localization, and translation, together tailoring gene expression in response to stimuli. Upon discovery, these proteins are typically classified as either DNA or RNA binding as defined by their in vivo functions; however, recent evidence suggests dual DNA and RNA binding by many of these proteins. High mobility group box (HMGB) proteins have a DNA binding HMGB domain, act as transcription factors and chromatin remodeling proteins, and are increasingly understood to interact with RNA as means to regulate gene expression. Herein, multiple layers of evidence that the HMGB family are dual DNA and RNA binding proteins is comprehensively reviewed. For example, HMGB proteins directly interact with RNA in vitro and in vivo, are localized to RNP granules involved in RNA processing, and their protein interactors are enriched in RNA binding proteins involved in RNA metabolism. Importantly, in cell-based systems, HMGB-RNA interactions facilitate protein-protein interactions, impact splicing outcomes, and modify HMGB protein genomic or cellular localization. Misregulation of these HMGB-RNA interactions are also likely involved in human disease. This review brings to light that as a family, HMGB proteins are likely to bind RNA which is essential to HMGB protein biology. This article is categorized under: RNA Interactions with Proteins and Other Molecules > Protein-RNA Recognition RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications.


Asunto(s)
Proteínas HMGB , ARN , Humanos , ARN/genética , ARN/metabolismo , Proteínas HMGB/química , Proteínas HMGB/genética , Proteínas HMGB/metabolismo , Proteínas de Unión al ADN/genética , Factores de Transcripción/metabolismo , ADN/metabolismo , Proteínas de Unión al ARN/metabolismo , Unión Proteica
10.
Biochemistry ; 61(22): 2490-2494, 2022 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-36239332

RESUMEN

Estrogen receptor alpha (ERα) is a ligand-responsive transcription factor critical for sex determination and development. Recent reports challenge the canonical view of ERα function by suggesting an activity beyond binding dsDNA at estrogen-responsive promotor elements: association with RNAs in vivo. Whether these interactions are direct or indirect remains unknown, which limits the ability to understand the extent, specificity, and biological role of ERα-RNA binding. Here we demonstrate that an extended DNA-binding domain of ERα directly binds a wide range of RNAs in vitro with structural specificity. ERα binds RNAs that adopt a range of hairpin-derived structures independent of sequence, while interacting poorly with single- and double-stranded RNA. RNA affinities are only 4-fold weaker than consensus dsDNA and significantly tighter than nonconsensus dsDNA sequences. Moreover, RNA binding is competitive with DNA binding. Together, these data show that ERα utilizes an extended DNA-binding domain to achieve a high-affinity/low-specificity mode for interacting with RNA.


Asunto(s)
Receptor alfa de Estrógeno , ARN , Receptor alfa de Estrógeno/química , Unión Proteica , ARN/genética , ARN/metabolismo , Factores de Transcripción/metabolismo , ADN/química
11.
Nat Rev Drug Discov ; 21(10): 736-762, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35941229

RESUMEN

RNA adopts 3D structures that confer varied functional roles in human biology and dysfunction in disease. Approaches to therapeutically target RNA structures with small molecules are being actively pursued, aided by key advances in the field including the development of computational tools that predict evolutionarily conserved RNA structures, as well as strategies that expand mode of action and facilitate interactions with cellular machinery. Existing RNA-targeted small molecules use a range of mechanisms including directing splicing - by acting as molecular glues with cellular proteins (such as branaplam and the FDA-approved risdiplam), inhibition of translation of undruggable proteins and deactivation of functional structures in noncoding RNAs. Here, we describe strategies to identify, validate and optimize small molecules that target the functional transcriptome, laying out a roadmap to advance these agents into the next decade.


Asunto(s)
MicroARNs , ARN Largo no Codificante , Humanos , MicroARNs/metabolismo , ARN/metabolismo , Empalme del ARN , ARN Largo no Codificante/genética , ARN no Traducido/metabolismo
12.
Biochemistry ; 2022 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-35511045

RESUMEN

There is a growing body of evidence that a substantial number of protein domains identified as DNA-binding also interact with RNA to regulate biological processes. Several recent studies have revealed that the Sox2 transcription factor binds RNA through its high-mobility group box (HMGB) domain in vitro and in vivo. A high degree of conservation of this domain among members of the Sox family of transcription factors suggests that RNA-binding activity may be a general feature of these proteins. To address this hypothesis, we examined a subset of HMGB domains from human Sox family of proteins for their ability to bind both DNA and RNA in vitro. We observed selective, high-affinity interactions between Sox family HMGB domains and various model RNA elements, including a four-way junction RNA, a hairpin RNA with an internal bulge, G-quadruplex RNA, and a fragment of long noncoding RNA ES2, which is known to directly interact with Sox2. Importantly, the HMGB domains bind these RNA ligands significantly tighter than nonconsensus dsDNA and in some cases with affinities rivaling those of their consensus dsDNA sequences. These data suggest that RNA binding is a conserved feature of the Sox family of transcription factors with the potential to modulate unappreciated biological functions.

13.
J Mol Biol ; 434(18): 167585, 2022 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-35427633

RESUMEN

Riboswitches are an outstanding example of genetic regulation mediated by RNA conformational switching. In these non-coding RNA elements, the occupancy status of a ligand-binding domain governs the mRNA's decision to form one of two mutually exclusive structures in the downstream expression platform. Temporal constraints upon the function of many riboswitches, requiring folding of complex architectures and conformational switching in a limited co-transcriptional timeframe, make them ideal model systems for studying these processes. In this review, we focus on the mechanism of ligand-directed conformational changes in one of the most widely distributed riboswitches in bacteria: the cobalamin family. We describe the architectural features of cobalamin riboswitches whose structures have been determined by x-ray crystallography, which suggest a direct physical role of cobalamin in effecting the regulatory switch. Next, we discuss a series of experimental approaches applied to several model cobalamin riboswitches that interrogate these structural models. As folding is central to riboswitch function, we consider the differences in folding landscapes experienced by RNAs that are produced in vitro and those that are allowed to fold co-transcriptionally. Finally, we highlight a set of studies that reveal the difficulties of studying cobalamin riboswitches outside the context of transcription and that co-transcriptional approaches are essential for developing a more accurate picture of their structure-function relationships in these switches. This understanding will be essential for future advancements in the use of small-molecule guided RNA switches in a range of applications such as biosensors, RNA imaging tools, and nucleic acid-based therapies.


Asunto(s)
Bacterias , Regulación Bacteriana de la Expresión Génica , Pliegue del ARN , Riboswitch , Vitamina B 12 , Bacterias/genética , Bacterias/metabolismo , Cristalografía por Rayos X , Ligandos , Vitamina B 12/metabolismo
14.
PLoS One ; 15(12): e0243155, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33259551

RESUMEN

Riboswitches, generally located in the 5'-leader of bacterial mRNAs, direct expression via a small molecule-dependent structural switch that informs the transcriptional or translational machinery. While the structure and function of riboswitch effector-binding (aptamer) domains have been intensely studied, only recently have the requirements for efficient linkage between small molecule binding and the structural switch in the cellular and co-transcriptional context begun to be actively explored. To address this aspect of riboswitch function, we have performed a structure-guided mutagenic analysis of the B. subtilis pbuE adenine-responsive riboswitch, one of the simplest riboswitches that employs a strand displacement switching mechanism to regulate transcription. Using a cell-based fluorescent protein reporter assay to assess ligand-dependent regulatory activity in E. coli, these studies revealed previously unrecognized features of the riboswitch. Within the aptamer domain, local and long-range conformational dynamics influenced by sequences within helices have a significant effect upon efficient regulatory switching. Sequence features of the expression platform including the pre-aptamer leader sequence, a toehold helix and an RNA polymerase pause site all serve to promote strong ligand-dependent regulation. By optimizing these features, we were able to improve the performance of the B. subtilis pbuE riboswitch in E. coli from 5.6-fold induction of reporter gene expression by the wild type riboswitch to over 120-fold in the top performing designed variant. Together, these data point to sequence and structural features distributed throughout the riboswitch required to strike a balance between rates of ligand binding, transcription and secondary structural switching via a strand exchange mechanism and yield new insights into the design of artificial riboswitches.


Asunto(s)
Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Escherichia coli K12/genética , Riboswitch/genética , Adenina/metabolismo , Aptámeros de Nucleótidos/química , Aptámeros de Nucleótidos/genética , Aptámeros de Nucleótidos/metabolismo , Genes Reporteros , Variación Genética , Ligandos , Modelos Genéticos , Modelos Moleculares , Mutagénesis , Conformación de Ácido Nucleico , ARN Bacteriano/química , ARN Bacteriano/genética , ARN Bacteriano/metabolismo , Transcripción Genética
15.
Nucleic Acids Res ; 48(16): 9320-9335, 2020 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-32813011

RESUMEN

Heterogeneous nuclear ribonuclear protein K (hnRNPK) is an abundant RNA-binding protein crucial for a wide variety of biological processes. While its binding preference for multi-cytosine-patch (C-patch) containing RNA is well documented, examination of binding to known cellular targets that contain C-patches reveals an unexpected breadth of binding affinities. Analysis of in-cell crosslinking data reinforces the notion that simple C-patch preference is not fully predictive of hnRNPK localization within transcripts. The individual RNA-binding domains of hnRNPK work together to interact with RNA tightly, with the KH3 domain being neither necessary nor sufficient for binding. Rather, the RG/RGG domain is implicated in providing essential contributions to RNA-binding, but not DNA-binding, affinity. hnRNPK is essential for X chromosome inactivation, where it interacts with Xist RNA specifically through the Xist B-repeat region. We use this interaction with an RNA motif derived from this B-repeat region to determine the RNA-structure dependence of C-patch recognition. While the location preferences of hnRNPK for C-patches are conformationally restricted within the hairpin, these structural constraints are relieved in the absence of RNA secondary structure. Together, these results illustrate how this multi-domain protein's ability to accommodate and yet discriminate between diverse cellular RNAs allows for its broad cellular functions.


Asunto(s)
Ribonucleoproteína Heterogénea-Nuclear Grupo K/genética , Motivos de Nucleótidos/genética , ARN Largo no Codificante/genética , Ribonucleoproteínas/genética , Animales , Emparejamiento Base/genética , Núcleo Celular/genética , Femenino , Humanos , Proteínas de Unión al ARN/genética , Inactivación del Cromosoma X/genética
16.
Nucleic Acids Res ; 48(17): e101, 2020 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-32797156

RESUMEN

Recent efforts in biological engineering have made detection of nucleic acids in samples more rapid, inexpensive and sensitive using CRISPR-based approaches. We expand one of these Cas13a-based methods to detect small molecules in a one-batch assay. Using SHERLOCK-based profiling of in vitrotranscription (SPRINT), in vitro transcribed RNA sequence-specifically triggers the RNase activity of Cas13a. This event activates its non-specific RNase activity, which enables cleavage of an RNA oligonucleotide labeled with a quencher/fluorophore pair and thereby de-quenches the fluorophore. This fluorogenic output can be measured to assess transcriptional output. The use of riboswitches or proteins to regulate transcription via specific effector molecules is leveraged as a coupled assay that transforms effector concentration into fluorescence intensity. In this way, we quantified eight different compounds, including cofactors, nucleotides, metabolites of amino acids, tetracycline and monatomic ions in samples. In this manner, hundreds of reactions can be easily quantified in a few hours. This increased throughput also enables detailed characterization of transcriptional regulators, synthetic compounds that inhibit transcription, or other coupled enzymatic reactions. These SPRINT reactions are easily adaptable to portable formats and could therefore be used for the detection of analytes in the field or at point-of-care situations.


Asunto(s)
Proteínas Bacterianas/metabolismo , Técnicas Biosensibles/métodos , Proteínas Asociadas a CRISPR/metabolismo , Endodesoxirribonucleasas/metabolismo , Pruebas de Enzimas/métodos , Inhibidores de la Síntesis del Ácido Nucleico/análisis , Proteínas Bacterianas/genética , Proteínas Asociadas a CRISPR/genética , Sistemas CRISPR-Cas , Endodesoxirribonucleasas/genética , Colorantes Fluorescentes/química , Leptotrichia , Ligandos , Inhibidores de la Síntesis del Ácido Nucleico/farmacología , Riboswitch , Rifampin/análisis , Factores de Transcripción/metabolismo , Transcripción Genética/efectos de los fármacos
17.
Elife ; 92020 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-32379046

RESUMEN

The Xist lncRNA mediates X chromosome inactivation (XCI). Here we show that Spen, an Xist-binding repressor protein essential for XCI , binds to ancient retroviral RNA, performing a surveillance role to recruit chromatin silencing machinery to these parasitic loci. Spen loss activates a subset of endogenous retroviral (ERV) elements in mouse embryonic stem cells, with gain of chromatin accessibility, active histone modifications, and ERV RNA transcription. Spen binds directly to ERV RNAs that show structural similarity to the A-repeat of Xist, a region critical for Xist-mediated gene silencing. ERV RNA and Xist A-repeat bind the RRM domains of Spen in a competitive manner. Insertion of an ERV into an A-repeat deficient Xist rescues binding of Xist RNA to Spen and results in strictly local gene silencing in cis. These results suggest that Xist may coopt transposable element RNA-protein interactions to repurpose powerful antiviral chromatin silencing machinery for sex chromosome dosage compensation.


The genetic material inside cells is often packaged into thread-like structures called chromosomes. In humans, mice and other mammals, a pair of sex chromosomes determines the genetic or chromosomal sex of each individual. Those who inherit two "X" chromosomes are said to be chromosomally female, while chromosomal males have one "X" and one "Y" chromosome. This means females have twice as many copies of genes on the X chromosome as a male does, which turns out to be double the number that the body needs. To solve this problem, mammals have developed a strategy known as dosage compensation. The second X chromosome in females becomes "silent": its DNA remains unchanged, but none of the genes are active. A long noncoding RNA molecule called Xist is responsible for switching off the extra X genes in female cells. It does this by coating the entirety of the second X chromosome. Normally, RNA molecules transmit the coded instructions in genes to the cellular machinery that manufactures proteins. "Noncoding" RNAs like Xist, however, are RNAs that have taken on different jobs inside the cell. Researchers believe that the ancestral Xist gene may have once encoded a protein but changed over time to produce only a noncoding RNA. Carter, Xu et al. therefore set out to find out how exactly this might have happened, and also how Xist might have acquired its ability to switch genes off. Initial experiments used mouse cells grown in the laboratory, in which a protein called Spen was deleted. Spen is known to help Xist silence the X chromosome. In female cells lacking Spen, the second X chromosome remained active. Other chromosomes in male and female cells also had stretches of DNA that became active upon Spen's removal. These DNA sequences, termed endogenous retroviruses, were remnants of ancestral viral infections. In other words, Spen normally acted as an antiviral defense. Analysis of genetic sequences showed that Spen recognized endogenous retrovirus sequences resembling a key region in Xist, a region which was needed for Xist to work properly. Inserting fragments of endogenous retroviruses into a defective version of Xist lacking this region also partially restored its ability to inactivate genes, suggesting that X chromosome silencing might work by hijacking cellular defenses against viruses. That is, female cells essentially 'pretend' there is a viral infection on the second X chromosome by coating it with Xist (which mimics endogenous retroviruses), thus directing Spen to shut it down. This research is an important step towards understanding how female cells carry out dosage compensation in mammals. More broadly, it sheds new light on how ancient viruses may have shaped the evolution of noncoding RNAs in the human genome.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Retrovirus Endógenos/genética , Células Madre Embrionarias de Ratones/virología , ARN Largo no Codificante/metabolismo , ARN Viral/metabolismo , Proteínas de Unión al ARN/metabolismo , Inactivación del Cromosoma X , Cromosoma X , Animales , Sitios de Unión , Línea Celular , Proteínas de Unión al ADN/genética , Compensación de Dosificación (Genética) , Retrovirus Endógenos/metabolismo , Femenino , Interacciones Huésped-Patógeno , Ratones , Células Madre Embrionarias de Ratones/metabolismo , Unión Proteica , ARN Largo no Codificante/genética , ARN Viral/genética , Proteínas de Unión al ARN/genética
18.
RNA ; 26(8): 982-995, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32371455

RESUMEN

RNA-Puzzles is a collective endeavor dedicated to the advancement and improvement of RNA 3D structure prediction. With agreement from crystallographers, the RNA structures are predicted by various groups before the publication of the crystal structures. We now report the prediction of 3D structures for six RNA sequences: four nucleolytic ribozymes and two riboswitches. Systematic protocols for comparing models and crystal structures are described and analyzed. In these six puzzles, we discuss (i) the comparison between the automated web servers and human experts; (ii) the prediction of coaxial stacking; (iii) the prediction of structural details and ligand binding; (iv) the development of novel prediction methods; and (v) the potential improvements to be made. We show that correct prediction of coaxial stacking and tertiary contacts is essential for the prediction of RNA architecture, while ligand binding modes can only be predicted with low resolution and simultaneous prediction of RNA structure with accurate ligand binding still remains out of reach. All the predicted models are available for the future development of force field parameters and the improvement of comparison and assessment tools.


Asunto(s)
Aptámeros de Nucleótidos/química , ARN Catalítico/química , ARN/química , Secuencia de Bases , Ligandos , Conformación de Ácido Nucleico , Riboswitch/genética
19.
Molecules ; 25(10)2020 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-32414072

RESUMEN

Riboswitches are important model systems for the development of approaches to search for RNA-targeting therapeutics. A principal challenge in finding compounds that target riboswitches is that the effector ligand is typically almost completely encapsulated by the RNA, which severely limits the chemical space that can be explored. Efforts to find compounds that bind the guanine/adenine class of riboswitches with a high affinity have in part focused on purines modified at the C6 and C2 positions. These studies have revealed compounds that have low to sub-micromolar affinity and, in a few cases, have antimicrobial activity. To further understand how these compounds interact with the guanine riboswitch, we have performed an integrated structural and functional analysis of representative guanine derivatives with modifications at the C8, C6 and C2 positions. Our data indicate that while modifications of guanine at the C6 position are generally unfavorable, modifications at the C8 and C2 positions yield compounds that rival guanine with respect to binding affinity. Surprisingly, C2-modified guanines such as N2-acetylguanine completely disrupt a key Watson-Crick pairing interaction between the ligand and RNA. These compounds, which also modulate transcriptional termination as efficiently as guanine, open up a significant new chemical space of guanine modifications in the search for antimicrobial agents that target purine riboswitches.


Asunto(s)
Bacillus subtilis/química , Pliegue del ARN , Riboswitch , Bacillus subtilis/genética , Ligandos
20.
Nat Commun ; 11(1): 1805, 2020 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-32286318

RESUMEN

Certain transcription factors are proposed to form functional interactions with RNA to facilitate proper regulation of gene expression. Sox2, a transcription factor critical for maintenance of pluripotency and neurogenesis, has been found associated with several lncRNAs, although it is unknown whether these interactions are direct or via other proteins. Here we demonstrate that human Sox2 interacts directly with one of these lncRNAs with high affinity through its HMG DNA-binding domain in vitro. These interactions are primarily with double-stranded RNA in a non-sequence specific fashion, mediated by a similar but not identical interaction surface. We further determined that Sox2 directly binds RNA in mouse embryonic stem cells by UV-cross-linked immunoprecipitation of Sox2 and more than a thousand Sox2-RNA interactions in vivo were identified using fRIP-seq. Together, these data reveal that Sox2 employs a high-affinity/low-specificity paradigm for RNA binding in vitro and in vivo.


Asunto(s)
ARN/metabolismo , Factores de Transcripción SOXB1/metabolismo , Animales , Secuencia de Bases , Unión Competitiva , ADN/metabolismo , Masculino , Ratones , Modelos Moleculares , Células Madre Embrionarias de Ratones/metabolismo , Unión Proteica , Dominios Proteicos , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Factores de Transcripción SOXB1/química , Eliminación de Secuencia , Electricidad Estática
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...