Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 5522, 2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-38951506

RESUMEN

Failure to appropriately predict and titrate reactivity to threat is a core feature of fear and anxiety-related disorders and is common following early life adversity (ELA). A population of neurons in the lateral central amygdala (CeAL) expressing corticotropin releasing factor (CRF) have been proposed to be key in processing threat of different intensities to mediate active fear expression. Here, we use in vivo fiber photometry to show that ELA results in sex-specific changes in the activity of CeAL CRF+ neurons, yielding divergent mechanisms underlying the augmented startle in ELA mice, a translationally relevant behavior indicative of heightened threat reactivity and hypervigilance. Further, chemogenic inhibition of CeAL CRF+ neurons selectively diminishes startle and produces a long-lasting suppression of threat reactivity. These findings identify a mechanism for sex-differences in susceptibility for anxiety following ELA and have broad implications for understanding the neural circuitry that encodes and gates the behavioral expression of fear.


Asunto(s)
Ansiedad , Núcleo Amigdalino Central , Hormona Liberadora de Corticotropina , Miedo , Neuronas , Reflejo de Sobresalto , Animales , Hormona Liberadora de Corticotropina/metabolismo , Miedo/fisiología , Neuronas/metabolismo , Neuronas/fisiología , Ratones , Femenino , Masculino , Ansiedad/fisiopatología , Núcleo Amigdalino Central/metabolismo , Reflejo de Sobresalto/fisiología , Ratones Endogámicos C57BL , Conducta Animal/fisiología , Estrés Psicológico
2.
Brain Behav Immun Health ; 38: 100760, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38586284

RESUMEN

Multisystem Inflammatory Syndrome in Children (MIS-C) is a secondary immune manifestation of COVID-19 involving multiple organ systems in the body, resulting in fever, skin rash, abdominal pain, nausea, shock, and cardiac dysfunction that often lead to hospitalization. Although many of these symptoms resolve following anti-inflammatory treatment, the long-term neurological and psychiatric sequelae of MIS-C are unknown. In this review, we will summarize two domains of the MIS-C disease course, 1) Neuroinflammation in the MIS-C brain and 2) Psychosocial disruptions resulting from stress and hospitalization. In both domains, we present existing clinical findings and hypothesize potential connections to psychiatric outcomes. This is the first review to conceptualize a holistic framework of psychiatric risk in MIS-C patients that includes neuroinflammatory and psychosocial risk factors. As cases of severe COVID-19 and MIS-C subside, it is important for clinicians to monitor outcomes in this vulnerable patient population.

3.
Horm Behav ; 158: 105464, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38070354

RESUMEN

Experiencing early life adversity (ELA) alters stress physiology and increases the risk for developing psychiatric disorders. The social environment can influence dynamics of stress responding and buffer and/or transfer stress across individuals. Yet, the impact of ELA on sensitivity to the stress of others and social behavior following stress is unknown. Here, to test the impact of ELA on social and physiological responses to stress, circulating blood corticosterone (CORT) and social behaviors were assessed in adult male and female mice reared under limited bedding and nesting (LBN) or control conditions. To induce stress, one cagemate of a pair-housed cage underwent a footshock paradigm and was then returned to their unshocked partner. CORT was measured in both groups of mice 20 or 90 min after stress exposure, and social behaviors were recorded and analyzed. ELA rearing influenced the CORT response to stress in a sex-specific manner. In males, both control and ELA-reared mice exhibited similar stress transfer to unshocked cagemates and similar CORT dynamics. In contrast, ELA females showed a heightened stress transfer to unshocked cagemates, and sustained elevation of CORT relative to controls, indicating enhanced stress contagion and a failure to terminate the stress response. Behaviorally, ELA females displayed decreased allogrooming and increased investigative behaviors, while ELA males showed reduced huddling. Together, these findings demonstrate that ELA influenced HPA axis dynamics, social stress contagion and social behavior. Further research is needed to unravel the underlying mechanisms and long-term consequences of ELA on stress systems and their impact on behavioral outcomes.


Asunto(s)
Experiencias Adversas de la Infancia , Corticosterona , Humanos , Adulto , Ratones , Masculino , Animales , Femenino , Sistema Hipotálamo-Hipofisario/fisiología , Sistema Hipófiso-Suprarrenal/fisiología , Estrés Psicológico/psicología
4.
Stress ; 26(1): 2244598, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37624104

RESUMEN

Early life adversity (ELA) heightens the risk for anxiety disorders (which are characterized by heightened fear and avoidance behaviors), with females being twice as likely as males to develop pathology. Pavlovian fear conditioning tasks have been used to study possible mechanisms supporting endophenotypes of pathology. Identification of sex and ELA selective effects on the nature of behavioral responding in these paradigms may provide a unique window into coping strategies in response to learned fear to guide more mechanistic studies. The goals of this study were two-fold; First, to test if male and female mice employed different coping strategies in response to threat learning using different conditioning parameters (low, medium, and high intensity foot shocks). Second, to test if ELA in the form of limited bedding and nesting (LBN) altered the behavioral response of mice to conditioning. Mice received 6 tone/foot-shock pairings at one of three different foot-shock intensities (0.35 mA; 0.57 mA; 0.7 mA). Freezing, darting, and foot-shock reactivity were measured across trials. During conditioning, control-reared female mice exhibited significantly higher rates of darting behavior compared to control males at nearly all shock intensities tested. LBN rearing decreased the proportion of darting females to levels observed in males. Thus, ELA in the form of LBN significantly diminished the recruitment of active versus passive coping strategies in female mice but did not generally change male responding. Additional work will be required to understand the neural basis of these behavioral effects. Findings extending from this work have the potential to shed light on how ELA impacts trajectories of regional brain development with implications for sex-selective risk for behavioral endophenotypes associated with pathology and possibly symptom presentation.


Asunto(s)
Caracteres Sexuales , Estrés Psicológico , Animales , Femenino , Masculino , Ratones , Adaptación Psicológica , Aprendizaje
5.
bioRxiv ; 2023 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-37502995

RESUMEN

Experiencing early life adversity (ELA) alters stress physiology and increases the risk for developing psychiatric disorders. The social environment can influence dynamics of stress responding and buffer and/or transfer stress across individuals. Yet, the impact of ELA on sensitivity to the stress of others and social behavior following stress is unknown. Here, to test the impact of ELA on social and physiological responses to stress, circulating blood corticosterone (CORT) and social behaviors were assessed in adult male and female mice reared under limited bedding and nesting (LBN) or control conditions. To induce stress, one cagemate of a pair-housed cage underwent a footshock paradigm and was then returned to their unshocked partner. CORT was measured in both mice 20 or 90 minutes after stress exposure, and social behaviors were recorded and analyzed. ELA rearing influenced the CORT response to stress in a sex-specific manner. In males, both control and ELA-reared mice exhibited similar stress transfer to unshocked cagemates and similar CORT dynamics. In contrast, ELA females showed a heightened stress transfer to unshocked cagemates, and sustained elevation of CORT relative to controls, indicating enhanced stress contagion and a failure to terminate the stress response. Behaviorally, ELA females displayed decreased allogrooming and increased investigative behaviors, while ELA males showed reduced huddling. Together, these findings demonstrate that ELA influenced HPA axis dynamics, social stress contagion and social behavior. Further research is needed to unravel the underlying mechanisms and long-term consequences of ELA on stress systems and their impact on behavioral outcomes.

6.
Neurobiol Stress ; 20: 100484, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36120094

RESUMEN

Early life adversity (ELA) is a major risk factor for the development of pathology, including anxiety disorders. Neurodevelopmental and behavioral outcomes following ELA are multifaceted and are influenced heavily by the type of adversity experienced and sex of the individual experiencing ELA. It remains unclear what properties of ELA portend differential neurobiological risk and the basis of sex-differences for negative outcomes. Predictability of the postnatal environment has emerged as being a core feature supporting development, with the most salient signals deriving from parental care. Predictability of parental care may be a distinguishing feature of different forms of ELA, and the degree of predictability afforded by these manipulations may contribute to the diversity of outcomes observed across models. Further, questions remain as to whether differing levels of predictability may contribute to differential effects on neurodevelopment and expression of genes associated with risk for pathology. Here, we tested the hypothesis that changes in maternal behavior in mice would be contingent on the type of ELA experienced, directly comparing predictability of care in the limited bedding and nesting (LBN) and maternal separation (MS) paradigms. We then tested whether the predictability of the ELA environment altered the expression of corticotropin-releasing hormone (Crh), a sexually-dimorphic neuropeptide that regulates threat-related learning, in the amygdala of male and female mice. The LBN manipulation reliably increased the entropy of maternal care, a measure that indicates lower predictability between sequences of dam behavior. LBN and MS rearing similarly increased the frequency of nest sorties and licking of pups but had mixed effects on other aspects of dam-, pup-, and nest-related behaviors. Increased expression of Crh-related genes was observed in pups that experienced ELA, with gene expression measures showing a significant interaction with sex and type of ELA manipulation. Specifically, MS was associated with increased expression of Crh-related genes in males, but not females, and LBN primarily increased expression of these genes in females, but not males. The present study provides evidence for predictability as a distinguishing feature of models of ELA and demonstrates robust consequences of these differing experience on sex-differences in gene expression critically associated with stress responding and sex differences in risk for pathology.

7.
Chem Senses ; 462021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-34618883

RESUMEN

Links between olfactory sensory function and effect have been well established. A robust literature exists in both humans and animals showing that disrupting olfaction sensory function can elicit disordered mood state, including serve as a model of depression. Despite this, considerably less is known regarding the directionality and neural basis of this relationship, e.g. whether disruptions in sensory function precede and contribute to altered mood or if altered mood state precipitates changes in olfactory perception. Further, the neural basis of altered olfactory function in depression remains unclear. In conjunction with clinical studies, animal models represent a valuable tool to understand the relationship between altered mood and olfactory sensory function. Here, we review the relevant literature assessing olfactory performance in depression in humans and in rodent models of depressive-like behavioral states. Rodents allow for detailed characterization of alterations in olfactory perception, manipulation of experiential events that elicit depressive-like phenotypes, and allow for interrogation of potential predictive markers of disease and the cellular basis of olfactory impairments associated with depressive-like phenotypes. We synthesize these findings to identify paths forward to investigate and understand the complex interplay between depression and olfactory sensory function.


Asunto(s)
Trastornos del Olfato , Percepción Olfatoria , Animales , Depresión , Olfato
8.
Elife ; 92020 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-32692310

RESUMEN

Early life adversity (ELA) is associated with increased risk for stress-related disorders later in life. The link between ELA and risk for psychopathology is well established but the developmental mechanisms remain unclear. Using a mouse model of resource insecurity, limited bedding (LB), we tested the effects of LB on the development of fear learning and neuronal structures involved in emotional regulation, the medial prefrontal cortex (mPFC) and basolateral amygdala (BLA). LB delayed the ability of peri-weanling (21 days old) mice to express, but not form, an auditory conditioned fear memory. LB accelerated the developmental emergence of parvalbumin (PV)-positive cells in the BLA and increased anatomical connections between PL and BLA. Fear expression in LB mice was rescued through optogenetic inactivation of PV-positive cells in the BLA. The current results provide a model of transiently blunted emotional reactivity in early development, with latent fear-associated memories emerging later in adolescence.


Asunto(s)
Experiencias Adversas de la Infancia/psicología , Amígdala del Cerebelo/crecimiento & desarrollo , Proliferación Celular/fisiología , Extinción Psicológica/fisiología , Miedo/fisiología , Miedo/psicología , Memoria/fisiología , Vías Nerviosas/crecimiento & desarrollo , Animales , Niño , Femenino , Humanos , Masculino , Ratones , Modelos Animales , Neurogénesis/fisiología , Factores Sexuales
9.
Trends Neurosci ; 43(5): 300-310, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32353334

RESUMEN

Sex as a biological variable (SABV) is critical for understanding the broad range of physiological, neurobiological, and behavioral consequences of early life adversity(ELA). The study of the interaction of SABV and ELA ties into several current debates, including the importance of taking into account SABV in research, differing strategies employed by males and females in response to adversity, and the possible evolutionary and developmental mechanisms of altered development in response to adversity. This review highlights the importance of studying both sexes, of understanding sex differences (and similarities) in response to ELA, and provides a context for the debate surrounding whether the response to ELA may be an adaptive process.


Asunto(s)
Experiencias Adversas de la Infancia , Caracteres Sexuales , Femenino , Humanos , Masculino , Estrés Psicológico
10.
Horm Behav ; 124: 104763, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32407728

RESUMEN

Early life adversity (ELA) increases risk for negative health outcomes, with sex disparities in prevalence and form of ELA experienced and risk for neuropsychiatric pathology. ELA comes in many forms (e.g. parental neglect/loss, limited access to resources) but whether disparate forms of ELA have common effects on outcomes, and if males and females are equally affected, remains unknown. Epidemiological studies often fail to accurately account for differences in type, timing, and duration of adversity experienced. Rodent models allow precise control of many of these variables. However, differences in the form of ELA, species, strain, housing, and testing paradigms used may contribute to differences in outcomes leading to questions of whether differences are the result of the form of ELA or these other variables. Here, we directly compared two mouse models of ELA, maternal separation (MS) and limited bedding (LB) in males and females on development of the body, motor and visual milestones, stress physiology, and anxiety-like behavior. LB affected timing of early milestones, somatic growth, and stress physiology in both sexes, yet only females showed later anxiety-like behaviors. MS rearing affected males and females similarly in early milestone development, yet only males showed changes in stress physiology and anxiety-like outcomes. These studies provide a platform to directly compare MS and LB models within one lab. The current work advances our understanding of the unique features of ELA that shape early neurodevelopmental events and risk for later pathology, increasing the translational relevance of these ELA models.


Asunto(s)
Crecimiento y Desarrollo/fisiología , Privación Materna , Estrés Fisiológico/fisiología , Estrés Psicológico/fisiopatología , Animales , Animales Recién Nacidos , Ansiedad/fisiopatología , Modelos Animales de Enfermedad , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Caracteres Sexuales , Estrés Psicológico/psicología
11.
iScience ; 22: 544-556, 2019 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-31855767

RESUMEN

Learning to perceptually discriminate between chemical signals in the environment (olfactory perceptual learning [OPL]) is critical for survival. Multiple mechanisms have been implicated in OPL, including modulation of neurogenesis and manipulation of cholinergic activity. However, whether these represent distinct processes regulating OPL or if cholinergic effects on OPL depend upon neurogenesis has remained an unresolved question. Using a combination of pharmacological and optogenetic approaches, cholinergic activity was shown to be both necessary and sufficient to drive OPL, and this process was dependent on the presence of newly born cells in the olfactory bulb (OB). This study is the first to directly demonstrate that cholinergic effects on OPL require adult OB neurogenesis.

12.
Front Behav Neurosci ; 13: 167, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31402857

RESUMEN

Early life adversity (ELA) is associated with altered neural development and increased risk for the development of psychopathology across the lifespan. Rodent models of ELA are an important tool for investigating the possible mechanistic underpinnings of pathology development. We used a limited bedding and nesting model (LBN) to induce stress in the dam and alter dam-pup interactions during a sensitive period in early postnatal development. The primary characteristics previously identified in this model include fragmented and unpredictable maternal care and possibly neglect. However, previous studies have not considered the effects of this manipulation over the full circadian cycle and the evolution of changes of maternal behavior throughout the duration of the manipulation. In the current study, we leverage a novel continuous video monitoring setup to unobtrusively observe and subsequently analyze maternal behaviors. Through this more in-depth analysis, we discovered that LBN dams spent more time than control dams on their nest, returned to their nest more frequently than control dams, and showed intact maternal care. Importantly, a subset of LBN dams (~40%) engaged in abusive-like kicking, a behavioral pattern not previously identified in this paradigm. Exposure to ELA and abusive-like kicking were associated with differences in risk-taking behavior in adulthood. The LBN model of ELA may drive a more complex constellation of effects on maternal behavior driving a pattern of increased dam-pup interactions and increased abuse-like kicking behavior, with unique consequences for pup outcomes.

13.
Neurobiol Aging ; 82: 18-29, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31377537

RESUMEN

Anxiety disorders represent 1 of the most common classes of psychiatric disorders. In the aging population and for patients with age-related pathology, the percentage of people suffering of anxiety is significantly elevated. Furthermore, anxiety carries with it an increased risk for a variety of age-related medical conditions, including cardiovascular disease, stroke, cognitive decline, and increased severity of motor symptoms in Parkinson's disease. A variety of anxiolytic compounds are available but often carry with them disturbing side effects that impact quality of life. Among nonmedicinal approaches to reducing anxiety, odor diffusion and aromatherapy are the most popular. In this review, we highlight the emerging perspective that the use of odorants may reduce anxiety symptoms or at least potentiate the effect of other anxiolytic approaches and may serve as an alternative form of therapy to deal with anxiety symptoms. Such approaches may be particularly beneficial in aging populations with elevated risk for these disorders. We also discuss potential neural mechanisms underlying the anxiolytic effects of odorants based on work in animal models.


Asunto(s)
Envejecimiento/efectos de los fármacos , Ansiolíticos/administración & dosificación , Ansiedad/tratamiento farmacológico , Aromaterapia/métodos , Encéfalo/efectos de los fármacos , Odorantes , Envejecimiento/metabolismo , Envejecimiento/patología , Animales , Ansiedad/metabolismo , Ansiedad/psicología , Aromaterapia/tendencias , Encéfalo/metabolismo , Encéfalo/patología , Humanos
14.
Front Neuroendocrinol ; 54: 100768, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31175880

RESUMEN

Various forms of early life adversity (ELA) have been linked with increased risk for negative health outcomes, including neuropsychiatric disorders. Understanding how the complex interplay between types, timing, duration, and severity of ELA, together with individual differences in genetic, socio-cultural, and physiological differences can mediate risk and resilience has proven difficult in population based studies. Use of animal models provides a powerful toolset to isolate key variables underlying risk for altered neural and behavioral maturational trajectories. However, a lack of clarity regarding the unique features of differing forms of adversity, lab differences in the implementation and reporting of methods, and the ability compare across labs and types of ELA has led to some confusion. Here, we highlight the diversity of approaches available, current challenges, and a possible ways forward to increase clarity and drive more meaningful and fruitful implementation and comparison of these approaches.


Asunto(s)
Experiencias Adversas de la Infancia , Desarrollo Infantil , Modelos Animales de Enfermedad , Resiliencia Psicológica , Estrés Psicológico , Animales , Niño , Humanos
15.
Front Mol Neurosci ; 12: 27, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30863281

RESUMEN

In humans, some forms of early life stress (ELS) have been linked with precocious puberty, altered brain maturation, and increased risk for a variety of forms of pathology. Interestingly, not all forms of ELS have been found to equally impact these metrics of maturation. In recent work, we have found that ELS in the form of limited bedding (LB) from P4 to P11, was associated with precocious hippocampus maturation in males and increased risk for depressive-like pathology and attentional disturbance in female mice. Here, we sought to test whether ELS in the form of LB also impacted the timing of sexual maturation in female mice. To establish rate of somatic and sexual development, distinct cohorts of mice were tested for weight gain, timing of vaginal opening, and development of estrous cycling. ELS animals weighed significantly less than controls at every timepoint measured. Onset of vaginal opening was tracked from P21 to 40, and ELS was found to significantly delay the onset of vaginal opening. To test the impact of ELS on estrous cycle duration and regularity, vaginal cytology was assessed in independent groups of animals using either a continuous sampling (daily from P40 to P57) or random sampling approach (single swab at P35, P50, or P75). ELS did impact measures of estrous cycling, but these effects were dependent upon the sampling method used. We also tested the impact of ELS on anxiety-like behaviors over development and across the estrous cycle. We observed a developmental increase in anxiety-like behavior in control but not ELS mice. No effect of estrous cycle stage was found on anxiety-like behavior for either group of mice. Together these results provide evidence that ELS in the form of LB delays somatic and sexual development. Additional work will be required to determine the mechanism by which ELS impacts these measures, and if these effects are common to other models of ELS in rodents.

16.
Neuropsychopharmacology ; 44(4): 711-720, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30188513

RESUMEN

Childhood trauma and neglect influence emotional development and increase the risk for and severity of mental illness. Women have a heightened susceptibility to the effects of early life stress (ELS) and are twice as likely as men to develop debilitating, stress-associated disorders later in life, such as major depressive disorder (MDD). Until now, mouse models of depression have been largely unsuccessful at replicating the diverse symptomatology of this disease and the sex bias in vulnerability. From P4 to P11, a limited bedding model that leads to fragmented maternal care, was used to induce ELS. Early adolescent and young adult mice were tested on an array of assays to test for depressive-like behavior. This included our newly developed automated home cage behavioral recognition system, where the home cage behavior of ELS and control mice could be monitored over a continuous 5-10 day span. ELS females, but not males, exhibited depressive-like behaviors on traditional assays. These effects emerged during adolescence and became more severe in adulthood. Using the novel home cage video monitoring method, we identified robust and continuous markers of depressive-like pathology in ELS females that phenocopy many of the behavioral characteristics of depression in humans. ELS effects on home cage behavior were rapidly rescued by ketamine, a fast-acting antidepressant. Together, these findings highlight that limited bedding ELS (1) produces an early emerging, female-specific depressive phenotype that responds to a fast-acting antidepressant and (2) this model has the potential to inform sex-selective risk for the development of stress-induced mental illness.


Asunto(s)
Antidepresivos/farmacología , Conducta Animal/fisiología , Depresión/tratamiento farmacológico , Depresión/etiología , Ketamina/farmacología , Caracteres Sexuales , Estrés Psicológico/complicaciones , Factores de Edad , Animales , Antidepresivos/administración & dosificación , Conducta Animal/efectos de los fármacos , Depresión/fisiopatología , Modelos Animales de Enfermedad , Femenino , Ketamina/administración & dosificación , Masculino , Ratones , Ratones Endogámicos C57BL
17.
Cell Rep ; 25(9): 2299-2307.e4, 2018 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-30485800

RESUMEN

Poverty, displacement, and parental stress represent potent sources of early life stress (ELS). Stress disproportionately affects females, who are at increased risk for stress-related pathologies associated with cognitive impairment. Mechanisms underlying stress-associated cognitive impairment and enhanced risk of females remain unknown. Here, ELS is associated with impaired rule-reversal (RR) learning in females, but not males. Impaired performance was associated with decreased expression and density of interneurons expressing parvalbumin (PV+) in orbitofrontal cortex (OFC), but not other interneuron subtypes. Optogenetic silencing of PV+ interneuron activity in OFC of control mice phenocopied RR learning deficits observed in ELS females. Localization of reversal learning deficits to PV+ interneurons in OFC was confirmed by optogenetic studies in which neurons in medial prefrontal cortex (mPFC) were silenced and associated with select deficits in rule-shift learning. Sex-, cell-, and region-specific effects show altered PV+ interneuron development can be a driver of sex differences in cognitive dysfunction.


Asunto(s)
Interneuronas/fisiología , Parvalbúminas/metabolismo , Corteza Prefrontal/fisiopatología , Aprendizaje Inverso/fisiología , Caracteres Sexuales , Estrés Psicológico/fisiopatología , Animales , Recuento de Células , Femenino , Masculino , Ratones Endogámicos C57BL , ARN Mensajero/genética , ARN Mensajero/metabolismo
18.
J Neurosci ; 38(44): 9433-9445, 2018 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-30381435

RESUMEN

The ability to anticipate and respond appropriately to the challenges and opportunities present in our environments is critical for adaptive behavior. Recent methodological innovations have led to substantial advances in our understanding of the neurocircuitry supporting such motivated behavior in adulthood. However, the neural circuits and cognitive processes that enable threat- and reward-motivated behavior undergo substantive changes over the course of development, and these changes are less well understood. In this article, we highlight recent research in human and animal models demonstrating how developmental changes in prefrontal-subcortical neural circuits give rise to corresponding changes in the processing of threats and rewards from infancy to adulthood. We discuss how these developmental trajectories are altered by experiential factors, such as early-life stress, and highlight the relevance of this research for understanding the developmental onset and treatment of psychiatric disorders characterized by dysregulation of motivated behavior.


Asunto(s)
Adaptación Psicológica/fisiología , Desarrollo Infantil/fisiología , Cognición/fisiología , Motivación/fisiología , Red Nerviosa/crecimiento & desarrollo , Corteza Prefrontal/crecimiento & desarrollo , Adolescente , Niño , Humanos , Estrés Psicológico/fisiopatología , Estrés Psicológico/psicología
19.
Behav Neurosci ; 132(4): 247-257, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29781628

RESUMEN

Early life stress (ELS) is associated with altered processing of threat signals, and increased lifetime risk of anxiety and affective pathology, disorders that disproportionately affect females. We tested the impact of a limited bedding paradigm of ELS (from P4-11) on contextual threat learning, context memory, footshock sensitivity, and anxietylike behavior, in adult male and female mice. To examine contextual threat learning, mice conditioned by context/footshock association were tested 24 hr later for the context memory. To determine the effect of ELS on footshock sensitivity, a separate cohort of mice were exposed to footshocks of increasing intensity (0.06 to 0.40 mA) and behavioral responses (jump and audible vocalization) were assessed by observers blind to treatment condition, sex, and cycle stage. ELS impaired context memory in female, but not male, mice. ELS increased footshock-induced threshold to vocalize, but not to jump, in both sexes. In female mice, this effect was most apparent during estrus. Decreased body weight, indicative of higher stress incurred by an individual mouse, correlated with increased threshold to jump in both sexes reared in ELS, and to audibly vocalize in ELS females. As ELS effects on shock sensitivity were present in both sexes, the contextual recall deficit in females was not likely driven by changes in the salience of aversive footshocks. No effects on anxietylike behavior, as measured in the elevated plus maze (EPM), were observed. More work is needed to better understand the impact of ELS on both somatic and gonadal development, and their potential contribution to threat learning. (PsycINFO Database Record


Asunto(s)
Ansiedad/psicología , Conducta Animal/fisiología , Estrés Psicológico/psicología , Animales , Femenino , Masculino , Ratones , Modelos Animales , Factores Sexuales
20.
Neurobiol Stress ; 7: 137-151, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29276735

RESUMEN

The current review is meant to synthesize research presented as part of a symposium at the 2016 Neurobiology of Stress workshop in Irvine California. The focus of the symposium was "Stress and the Synapse: New Concepts and Methods" and featured the work of several junior investigators. The presentations focused on the impact of various forms of stress (altered maternal care, binge alcohol drinking, chronic social defeat, and chronic unpredictable stress) on synaptic function, neurodevelopment, and behavioral outcomes. One of the goals of the symposium was to highlight the mechanisms accounting for how the nervous system responds to stress and their impact on outcome measures with converging effects on the development of pathological behavior. Dr. Kevin Bath's presentation focused on the impact of disruptions in early maternal care and its impact on the timing of hippocampus maturation in mice, finding that this form of stress drove accelerated synaptic and behavioral maturation, and contributed to the later emergence of risk for cognitive and emotional disturbance. Dr. Scott Russo highlighted the impact of chronic social defeat stress in adolescent mice on the development and plasticity of reward circuity, with a focus on glutamatergic development in the nucleus accumbens and mesolimbic dopamine system, and the implications of these changes for disruptions in social and hedonic response, key processes disturbed in depressive pathology. Dr. Kristen Pleil described synaptic changes in the bed nuclei of the stria terminalis that underlie the behavioral consequences of allostatic load produced by repeated cycles of alcohol binge drinking and withdrawal. Dr. Eric Wohleb and Dr. Ron Duman provided new data associating decreased mammalian target of rapamycin (mTOR) signaling and neurobiological changes in the synapses in response to chronic unpredictable stress, and highlighted the potential for the novel antidepressant ketamine to rescue synaptic and behavioral effects. In aggregate, these presentations showcased how divergent perspectives provide new insights into the ways in which stress impacts circuit development and function, with implications for understanding emergence of affective pathology.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...