Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
BMC Microbiol ; 7: 26, 2007 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-17408487

RESUMEN

BACKGROUND: Clinical isolates of the gastric pathogen Helicobacter pylori display a high level of genetic macro- and microheterogeneity, featuring a panmictic, rather than clonal structure. The ability of H. pylori to survive the stomach acid is due, in part, to the arginase-urease enzyme system. Arginase (RocF) hydrolyzes L-arginine to L-ornithine and urea, and urease hydrolyzes urea to carbon dioxide and ammonium, which can neutralize acid. RESULTS: The degree of variation in arginase was explored at the DNA sequence, enzyme activity and protein expression levels. To this end, arginase activity was measured from 73 minimally-passaged clinical isolates and six laboratory-adapted strains of H. pylori. The rocF gene from 21 of the strains was cloned into genetically stable E. coli and the enzyme activities measured. Arginase activity was found to substantially vary (>100-fold) in both different H. pylori strains and in the E. coli model. Western blot analysis revealed a positive correlation between activity and amount of protein expressed in most H. pylori strains. Several H. pylori strains featured altered arginase activity upon in vitro passage. Pairwise alignments of the 21 rocF genes plus strain J99 revealed extensive microheterogeneity in the promoter region and 3' end of the rocF coding region. Amino acid S232, which was I232 in the arginase-negative clinical strain A2, was critical for arginase activity. CONCLUSION: These studies demonstrated that H. pylori arginase exhibits extensive genotypic and phenotypic variation which may be used to understand mechanisms of microheterogeneity in H. pylori.


Asunto(s)
Arginasa/genética , Proteínas Bacterianas/genética , Helicobacter pylori/genética , Arginasa/metabolismo , Proteínas Bacterianas/metabolismo , Secuencia de Bases , Western Blotting , Clonación Molecular , ADN Bacteriano/química , ADN Bacteriano/genética , Electroforesis en Gel de Poliacrilamida , Regulación Bacteriana de la Expresión Génica , Heterogeneidad Genética , Variación Genética , Infecciones por Helicobacter/microbiología , Helicobacter pylori/enzimología , Humanos , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Fenotipo , Filogenia , Análisis de Secuencia de ADN , Homología de Secuencia de Aminoácido , Serina/genética , Serina/metabolismo , Ureasa/metabolismo
2.
BMC Mol Biol ; 6: 6, 2005 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-15766387

RESUMEN

BACKGROUND: The current investigation was undertaken to determine key steps differentiating G:T and G:A repair at the H-ras oncogenic hot spot within the nuclear environment because of the large difference in repair efficiency of these two mismatches. RESULTS: Electrophoretic mobility shift (gel shift) experiments demonstrate that DNA containing mismatched bases are recognized and bound equally efficiently by hMutSalpha in both MMR proficient and MMR deficient (hMLH1-/-) nuclear extracts. Competition experiments demonstrate that while hMutSalpha predictably binds the G:T mismatch to a much greater extent than G:A, hMutSalpha demonstrates a surprisingly equal ratio of competitive inhibition for both G:T and G:A mismatch binding reactions at the H-ras hot spot of mutation. Further, mismatch repair assays reveal almost 2-fold higher efficiency of overall G:A repair (5'-nick directed correct MMR to G:C and incorrect repair to T:A), as compared to G:T overall repair. Conversely, correct MMR of G:T --> G:C is significantly higher (96%) than that of G:A --> G:C (60%). CONCLUSION: Combined, these results suggest that initiation of correct MMR requires the contribution of two separate steps; initial recognition by hMutSalpha followed by subsequent binding. The 'avidity' of the binding step determines the extent of MMR pathway activation, or the activation of a different cellular pathway. Thus, initial recognition by hMutSalpha in combination with subsequent decreased binding to the G:A mismatch (as compared to G:T) may contribute to the observed increased frequency of incorrect repair of G:A, resulting in the predominant GGC --> GTC (Gly --> Val) ras-activating mutation found in a high percentage of human tumors.


Asunto(s)
Disparidad de Par Base/genética , Codón/genética , Reparación del ADN , Proteínas/genética , Proteínas ras/genética , Línea Celular Tumoral , ADN/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Ensayo de Cambio de Movilidad Electroforética/métodos , Células HCT116 , Humanos , Modelos Biológicos , Plásmidos/genética , Mutación Puntual/genética , Proto-Oncogenes/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA