Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 12(1): 5406, 2021 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-34518533

RESUMEN

DNA methylation is aberrant in cancer, but the dynamics, regulatory role and clinical implications of such epigenetic changes are still poorly understood. Here, reduced representation bisulfite sequencing (RRBS) profiles of 1538 breast tumors and 244 normal breast tissues from the METABRIC cohort are reported, facilitating detailed analysis of DNA methylation within a rich context of genomic, transcriptional, and clinical data. Tumor methylation from immune and stromal signatures are deconvoluted leading to the discovery of a tumor replication-linked clock with genome-wide methylation loss in non-CpG island sites. Unexpectedly, methylation in most tumor CpG islands follows two replication-independent processes of gain (MG) or loss (ML) that we term epigenomic instability. Epigenomic instability is correlated with tumor grade and stage, TP53 mutations and poorer prognosis. After controlling for these global trans-acting trends, as well as for X-linked dosage compensation effects, cis-specific methylation and expression correlations are uncovered at hundreds of promoters and over a thousand distal elements. Some of these targeted known tumor suppressors and oncogenes. In conclusion, this study demonstrates that global epigenetic instability can erode cancer methylomes and expose them to localized methylation aberrations in-cis resulting in transcriptional changes seen in tumors.


Asunto(s)
Neoplasias de la Mama/genética , Metilación de ADN , Epigénesis Genética , Epigenómica/métodos , Regulación Neoplásica de la Expresión Génica , Estudios de Cohortes , Islas de CpG/genética , Replicación del ADN/genética , Femenino , Genoma Humano/genética , Inestabilidad Genómica/genética , Genómica/métodos , Humanos , Células MCF-7 , Mutación , Regiones Promotoras Genéticas/genética , Análisis de Supervivencia
2.
Bioinformatics ; 36(22-23): 5524-5525, 2021 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-33346800

RESUMEN

MOTIVATION: Whole-genome bisulfite sequencing (WGBS) measures DNA methylation at base pair resolution resulting in large bedGraph like coverage files. Current options for processing such files are hindered by discrepancies in file format specification, speed, and memory requirements. RESULTS: We developed methrix, an R package, which provides a toolset for systematic analysis of large datasets. Core functionality of the package includes a comprehensive bedGraph or similar tab-separated text file reader-which summarizes methylation calls based on annotated reference indices, infers and collapses strands and handles uncovered reference CpG sites while facilitating a flexible input file format specification. Additional optimized functions for quality control filtering, subsetting and visualization allow user-friendly and effective processing of WGBS results. Easy integration with tools for differentially methylated region (DMR) calling and annotation further eases the analysis of genome-wide methylation data. Overall, methrix enriches established WGBS workflows by bringing together computational efficiency and versatile functionality. AVAILABILITY AND IMPLEMENTATION: Methrix is implemented as an R package, made available under MIT license at https://github.com/CompEpigen/methrix and can be installed from the Bioconductor repository. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.

3.
BMC Genomics ; 19(1): 19, 2018 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-29304755

RESUMEN

BACKGROUND: Patient-Derived Tumour Xenografts (PDTXs) have emerged as the pre-clinical models that best represent clinical tumour diversity and intra-tumour heterogeneity. The molecular characterization of PDTXs using High-Throughput Sequencing (HTS) is essential; however, the presence of mouse stroma is challenging for HTS data analysis. Indeed, the high homology between the two genomes results in a proportion of mouse reads being mapped as human. RESULTS: In this study we generated Whole Exome Sequencing (WES), Reduced Representation Bisulfite Sequencing (RRBS) and RNA sequencing (RNA-seq) data from samples with known mixtures of mouse and human DNA or RNA and from a cohort of human breast cancers and their derived PDTXs. We show that using an In silico Combined human-mouse Reference Genome (ICRG) for alignment discriminates between human and mouse reads with up to 99.9% accuracy and decreases the number of false positive somatic mutations caused by misalignment by >99.9%. We also derived a model to estimate the human DNA content in independent PDTX samples. For RNA-seq and RRBS data analysis, the use of the ICRG allows dissecting computationally the transcriptome and methylome of human tumour cells and mouse stroma. In a direct comparison with previously reported approaches, our method showed similar or higher accuracy while requiring significantly less computing time. CONCLUSIONS: The computational pipeline we describe here is a valuable tool for the molecular analysis of PDTXs as well as any other mixture of DNA or RNA species.


Asunto(s)
Genómica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Ensayos Antitumor por Modelo de Xenoinjerto , Animales , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Perfilación de la Expresión Génica , Humanos , Ratones , Mutación , Alineación de Secuencia , Análisis de Secuencia de ADN , Análisis de Secuencia de ARN
4.
Cell ; 167(1): 260-274.e22, 2016 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-27641504

RESUMEN

The inter- and intra-tumor heterogeneity of breast cancer needs to be adequately captured in pre-clinical models. We have created a large collection of breast cancer patient-derived tumor xenografts (PDTXs), in which the morphological and molecular characteristics of the originating tumor are preserved through passaging in the mouse. An integrated platform combining in vivo maintenance of these PDTXs along with short-term cultures of PDTX-derived tumor cells (PDTCs) was optimized. Remarkably, the intra-tumor genomic clonal architecture present in the originating breast cancers was mostly preserved upon serial passaging in xenografts and in short-term cultured PDTCs. We assessed drug responses in PDTCs on a high-throughput platform and validated several ex vivo responses in vivo. The biobank represents a powerful resource for pre-clinical breast cancer pharmacogenomic studies (http://caldaslab.cruk.cam.ac.uk/bcape), including identification of biomarkers of response or resistance.


Asunto(s)
Bancos de Muestras Biológicas , Neoplasias de la Mama , Ensayos Antitumor por Modelo de Xenoinjerto , Animales , Biomarcadores Farmacológicos , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Resistencia a Antineoplásicos/genética , Femenino , Ensayos Analíticos de Alto Rendimiento , Humanos , Ratones , Pruebas de Farmacogenómica , Células Tumorales Cultivadas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...