RESUMEN
PURPOSE: B-cell maturation antigen (BCMA)-chimeric antigen receptor T-cells (CART) improve results obtained with conventional therapy in the treatment of relapsed/refractory multiple myeloma. However, the high demand and expensive costs associated with CART therapy might prove unsustainable for health systems. Academic CARTs could potentially overcome these issues. Moreover, response biomarkers and resistance mechanisms need to be identified and addressed to improve efficacy and patient selection. Here, we present clinical and ancillary results of the 60 patients treated with the academic BCMA-CART, ARI0002h, in the CARTBCMA-HCB-01 trial. PATIENTS AND METHODS: We collected apheresis, final product, peripheral blood and bone marrow samples before and after infusion. We assessed BCMA, T-cell subsets, CART kinetics and antibodies, B-cell aplasia, cytokines, and measurable residual disease by next-generation flow cytometry, and correlated these to clinical outcomes. RESULTS: At cut-off date March 17, 2023, with a median follow-up of 23.1 months (95% CI, 9.2-37.1), overall response rate in the first 3 months was 95% [95% confidence interval (CI), 89.5-100]; cytokine release syndrome (CRS) was observed in 90% of patients (5% grades ≥3) and grade 1 immune effector cell-associated neurotoxicity syndrome was reported in 2 patients (3%). Median progression-free survival was 15.8 months (95% CI, 11.5-22.4). Surface BCMA was not predictive of response or survival, but soluble BCMA correlated with worse clinical outcomes and CRS severity. Activation marker HLA-DR in the apheresis was associated with longer progression-free survival and increased exhaustion markers correlated with poorer outcomes. ARI0002h kinetics and loss of B-cell aplasia were not predictive of relapse. CONCLUSIONS: Despite deep and sustained responses achieved with ARI0002h, we identified several biomarkers that correlate with poor outcomes.
Asunto(s)
Antígeno de Maduración de Linfocitos B , Inmunoterapia Adoptiva , Mieloma Múltiple , Humanos , Mieloma Múltiple/terapia , Mieloma Múltiple/inmunología , Mieloma Múltiple/tratamiento farmacológico , Antígeno de Maduración de Linfocitos B/inmunología , Antígeno de Maduración de Linfocitos B/antagonistas & inhibidores , Masculino , Femenino , Persona de Mediana Edad , Anciano , Inmunoterapia Adoptiva/efectos adversos , Inmunoterapia Adoptiva/métodos , Adulto , Biomarcadores de Tumor , Receptores Quiméricos de Antígenos/inmunología , Resultado del TratamientoRESUMEN
Waldenström macroglobulinaemia (WM) is characterized by recurrent somatic mutations in MYD88 and CXCR4 genes. However, limitations arise when analysing these mutations in IgM monoclonal gammopathy of undetermined significance (MGUS) or smouldering WM (SWM) given the lower tumour load. Here, we used droplet digital polymerase chain reaction (ddPCR) to analyse MYD88 L265P and CXCR4 S338* mutations (C1013G and C1013A) in unsorted bone marrow (BM) or cell-free DNA (cfDNA) samples from 101 IgM MGUS and 69 SWM patients. ddPCR was more sensitive to assess MYD88 L265P compared to allele-specific PCR, especially in IgM MGUS (64% vs 39%). MYD88 mutation burden correlated with other laboratory biomarkers, particularly BM infiltration (r = 0.8; p < 0.001). CXCR4 C1013G was analysed in MYD88-mutated samples with available genomic DNA and was detected in 19/54 (35%) and 18/42 (43%) IgM MGUS and SWM cases respectively, also showing correlation with BM involvement (r = 0.9; p < 0.001). ddPCR also detected 8 (38%) and 10 (63%) MYD88-mutated cfDNA samples in IgM MGUS and SWM respectively. Moreover, high BM mutation burden (≥8% MYD88 and ≥2% CXCR4) was associated with an increased risk of progression to symptomatic WM. We show the clinical applicability of ddPCR to assess MYD88 and CXCR4 in IgM MGUS and SWM and provide a molecular-based risk classification.
Asunto(s)
Ácidos Nucleicos Libres de Células , Linfoma de Células B , Gammopatía Monoclonal de Relevancia Indeterminada , Macroglobulinemia de Waldenström , Humanos , Macroglobulinemia de Waldenström/diagnóstico , Macroglobulinemia de Waldenström/genética , Gammopatía Monoclonal de Relevancia Indeterminada/diagnóstico , Gammopatía Monoclonal de Relevancia Indeterminada/genética , Factor 88 de Diferenciación Mieloide/genética , Pronóstico , Mutación , Reacción en Cadena de la Polimerasa , Ácidos Nucleicos Libres de Células/genética , Inmunoglobulina M/genética , Receptores CXCR4/genéticaRESUMEN
Autologous cell immunotherapy using B cell maturation antigen (BCMA)-targeted chimeric antigen receptor (CAR)-T cells is an effective novel treatment for multiple myeloma (MM). This therapy has only been used for relapsed and refractory patients, at which stage the endogenous T cells used to produce the CAR-T cells are affected by the immunosuppressive nature of advanced MM and/or side effects of previous therapies. An alternative pool of "fitter" T cells is found in leukocytoapheresis products that are routinely collected to obtain hematopoietic progenitor cells for autologous stem cell transplantation (ASCT) early in the treatment of MM. However, to mobilize the progenitor cells, patients are dosed with granulocyte colony-stimulating factor (G-CSF), which is reported to adversely affect T cell proliferation, function, and differentiation. Here, we aimed to first establish whether G-CSF treatment negatively influences T cell phenotype and to ascertain whether previous exposure of T cells to G-CSF is deleterious for anti-BCMA CAR-T cells. We observed that G-CSF had a minimal impact on T cell phenotype when added in vitro or administered to patients. Moreover, we found that CAR-T cell fitness and anti-tumor activity were unaffected when generated from G-CSF-exposed T cells. Overall, we showed that ASCT apheresis products are a suitable source of T cells for anti-BCMA CAR-T cell manufacture.
RESUMEN
Chimeric antigen receptor (CAR)-T cell immunotherapy has revolutionized the treatment of B-lymphoid malignancies. For multiple myeloma (MM), B-cell maturation antigen (BCMA)-targeted CAR-T cells have achieved outstanding complete response rates, but unfortunately, patients often relapse within a year of receiving the therapy. Increased persistence and reduced dysfunction are crucial features that enhance the durability of CAR-T cell responses. One of the factors that influence CAR-T cell in vivo longevity and loss of function, but which has not yet been extensively studied for BCMA-directed CAR-T cells, are the cytokines used during their production. We here compared the impact of IL-2, IL-15 and a combination of IL-15/IL-7 on the phenotype and function of ARI2h, an academic BCMA-directed CAR-T cell that is currently being administered to MM patients. For this study, flow cytometry, in vitro cytotoxicity assays and analysis of cytokine release were performed. In addition, ARI2h cells expanded with IL-2, IL-15, or IL-15/IL-7 were injected into MM tumor-bearing mice to assess their in vivo efficacy. We demonstrated that each of the cytokine conditions was suitable for the expansion of ARI2h cells, with clear in vitro activity. Strikingly, however, IL-15-produced ARI2h cells had improved in vivo efficacy and persistence. When explored further, it was found that IL-15 drove a less-differentiated ARI2h phenotype, ameliorated parameters related to CAR-T cell dysfunction, and lowered the release of cytokines potentially involved in cytokine release syndrome and MM progression. Moreover, we observed that IL-15 was less potent in inducing T cell senescence and DNA damage accumulation, both of which may contribute to an unfavorable CAR-T cell phenotype. These findings show the superiority of IL-15 to IL-2 and IL-15/IL-7 in the quality of anti-BCMA CAR-T cells, particularly their efficacy and persistence, and as such, could improve the duration of responses if applied to the clinical production of CAR-T cells for patients.
RESUMEN
Natural killer (NK) cells are potent anti-tumor and anti-microbial cells of our innate immune system. They are equipped with a vast array of receptors that recognize tumor cells and other pathogens. The innate immune activity of NK cells develops faster than the adaptive one performed by T cells, and studies suggest an important immunoregulatory role for each population against the other. The association, observed in acute myeloid leukemia patients receiving haploidentical killer-immunoglobulin-like-receptor-mismatched NK cells, with induction of complete remission was the determinant to begin an increasing number of clinical studies administering NK cells for the treatment of cancer patients. Unfortunately, even though transfused NK cells demonstrated safety, their observed efficacy was poor. In recent years, novel studies have emerged, combining NK cells with other immunotherapeutic agents, such as monoclonal antibodies, which might improve clinical efficacy. Moreover, genetically-modified NK cells aimed at arming NK cells with better efficacy and persistence have appeared as another option. Here, we review novel pre-clinical and clinical studies published in the last five years administering NK cells as a monotherapy and combined with other agents, and we also review chimeric antigen receptor-modified NK cells for the treatment of cancer patients. We then describe studies regarding the role of NK cells as anti-microbial effectors, as lessons that we could learn and apply in immunotherapy applications of NK cells; these studies highlight an important immunoregulatory role performed between T cells and NK cells that should be considered when designing immunotherapeutic strategies. Lastly, we highlight novel strategies that could be combined with NK cell immunotherapy to improve their targeting, activity, and persistence.
RESUMEN
Cellular senescence was first described as a physiological tumor cell suppressor mechanism that leads to cell growth arrest with production of the senescence-associated secretory phenotype known as SASP. The main role of SASP in physiological conditions is to attract immune cells to clear senescent cells avoiding tumor development. However, senescence can be damage-associated and, depending on the nature of these stimuli, additional types of senescence have been described. In the context of cancer, damage-associated senescence has been described as a consequence of chemotherapy treatments that were initially thought of as a tumor suppressor mechanism. However, in certain contexts, senescence after chemotherapy can promote cancer progression, especially when immune cells become senescent and cannot clear senescent tumor cells. Moreover, aging itself leads to continuous inflammaging and immunosenescence which are responsible for rewiring immune cells to become defective in their functionality. Here, we define different types of senescence, pathways that activate them, and functions of SASP in these events. Additionally, we describe the role of senescence in cancer and its treatments, including how aging and chemotherapy contribute to senescence in tumor cells, before focusing on immune cell senescence and its role in cancer. Finally, we discuss potential therapeutic interventions to reverse cell senescence.
Asunto(s)
Inmunoterapia/métodos , Neoplasias/tratamiento farmacológico , Senescencia Celular , Resistencia a Antineoplásicos/efectos de los fármacos , Quimioterapia , Redes Reguladoras de Genes/efectos de los fármacos , Humanos , Neoplasias/inmunologíaRESUMEN
The class I PI3K family of lipid kinases plays an important role in integrin αIIbß3 function, thereby supporting thrombus growth and consolidation. Here, we identify Ras/Rap1GAP Rasa3 (GAP1IP4BP) as a major phosphatidylinositol 3,4,5-trisphosphate-binding protein in human platelets and a key regulator of integrin αIIbß3 outside-in signaling. We demonstrate that cytosolic Rasa3 translocates to the plasma membrane in a PI3K-dependent manner upon activation of human platelets. Expression of wild-type Rasa3 in integrin αIIbß3-expressing CHO cells blocked Rap1 activity and integrin αIIbß3-mediated spreading on fibrinogen. In contrast, Rap1GAP-deficient (P489V) and Ras/Rap1GAP-deficient (R371Q) Rasa3 had no effect. We furthermore show that two Rasa3 mutants (H794L and G125V), which are expressed in different mouse models of thrombocytopenia, lack both Ras and Rap1GAP activity and do not affect integrin αIIbß3-mediated spreading of CHO cells on fibrinogen. Platelets from thrombocytopenic mice expressing GAP-deficient Rasa3 (H794L) show increased spreading on fibrinogen, which in contrast to wild-type platelets is insensitive to PI3K inhibitors. Together, these results support an important role for Rasa3 in PI3K-dependent integrin αIIbß3-mediated outside-in signaling and cell spreading.