Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Inorg Chem ; 52(4): 1676-8, 2013 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-23356398

RESUMEN

The thiolato complex [platinum(II) (bipyridine)(N,S-aminoethanethiolate)](+)Ch(-) (1) undergoes sequential reactions with singlet oxygen to initially form the corresponding sulfenato complex [platinum(II) (bipyridine)(N,S(═O)-aminoethansulfenate)](+) (2) followed by a much slower reaction to the corresponding sulfinato complex. In contrast with many platinum dithiolato complexes, 1 does not produce any singlet oxygen, but its rate constant for singlet oxygen removal (k(T)) is quite large (3.2 × 10(7) M(-1) s(-1)) and chemical reaction accounts for ca. 25% of the value of k(T). The behavior of 1 is strikingly different from that of the complex platinum(II) (bipyridine)(1,2-benzenditholate) (4). The latter complex reacts with (1)O(2) (either from an external sensitizer or via a self-sensitized pathway) to form a sulfinato complex. These two very different reactivity pathways imply different mechanistic pathways: The reaction of 1 with (1)O(2) must involve O-O bond cleavage and intermolecular oxygen atom transfer, while the reactive intermediate in complex 4 collapses intramolecularly to the sulfinato moiety.


Asunto(s)
Cisteamina/química , Iminas/química , Compuestos Organoplatinos/química , Oxígeno/química , Platino (Metal)/química , Ácidos Sulfínicos/síntesis química , Cristalografía por Rayos X , Modelos Moleculares , Estructura Molecular , Compuestos Organoplatinos/síntesis química , Oxidación-Reducción , Procesos Fotoquímicos , Ácidos Sulfínicos/química
2.
Hyperfine Interact ; 222(2 Suppl): 77-90, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26052177

RESUMEN

We have applied 57Fe nuclear resonance vibrational spectroscopy (NRVS) for the first time to study the dynamics of Fe centers in Fe-S protein crystals, including oxidized wild type rubredoxin crystals from Pyrococcus furiosus, and the MoFe protein of nitrogenase from Azotobacter vinelandii. Thanks to the NRVS selection rule, selectively probed vibrational modes have been observed in both oriented rubredoxin and MoFe protein crystals. The NRVS work was complemented by extended X-ray absorption fine structure spectroscopy (EXAFS) measurements on oxidized wild type rubredoxin crystals from Pyrococcus furiosus. The EXAFS spectra revealed the Fe-S bond length difference in oxidized Pf Rd protein, which is qualitatively consistent with the X-ray crystal structure.

3.
Inorg Chem ; 51(6): 3613-24, 2012 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-22360641

RESUMEN

The unusual uranium reaction system in which uranium(4+) and uranium(3+) hydrides interconvert by formal bimetallic reductive elimination and oxidative addition reactions, [(C(5)Me(5))(2)UH(2)](2) (1) ⇌ [(C(5)Me(5))(2)UH](2) (2) + H(2), was studied by employing multiconfigurational quantum chemical and density functional theory methods. 1 can act as a formal four-electron reductant, releasing H(2) gas as the byproduct of four H(2)/H(-) redox couples. The calculated structures for both reactants and products are in good agreement with the X-ray diffraction data on 2 and 1 and the neutron diffraction data on 1 obtained under H(2) pressure as part of this study. The interconversion of the uranium(4+) and uranium(3+) hydride species was calculated to be near thermoneutral (~-2 kcal/mol). Comparison with the unknown thorium analogue, [(C(5)Me(5))(2)ThH](2), shows that the thorium(4+) to thorium(3+) hydride interconversion reaction is endothermic by 26 kcal/mol.

4.
Nat Chem ; 3(10): 814-20, 2011 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-21941255

RESUMEN

Heteromultimetallic hydride clusters containing both rare-earth and d-transition metals are of interest in terms of both their structure and reactivity. However, such heterometallic complexes have not yet been investigated to a great extent because of difficulties in their synthesis and structural characterization. Here, we report the synthesis, X-ray and neutron diffraction studies, and hydrogen addition and release properties of a family of rare-earth/d-transition-metal heteromultimetallic polyhydride complexes of the core structure type 'Ln(4)MH(n)' (Ln = Y, Dy, Ho; M = Mo, W; n = 9, 11, 13). Monitoring of hydrogen addition to a hydride cluster such as [{(C(5)Me(4)SiMe(3))Y}(4)(µ-H)(9)Mo(C(5)Me(5))] in a single-crystal to single-crystal process by X-ray diffraction has been achieved for the first time. Density functional theory studies reveal that the hydrogen addition process is cooperatively assisted by the Y/Mo heteromultimetallic sites, thus offering unprecedented insight into the hydrogen addition and release process of a metal hydride cluster.


Asunto(s)
Hidrógeno/química , Metales de Tierras Raras/química , Elementos de Transición/química , Cristalografía por Rayos X , Hidrogenación , Conformación Molecular , Difracción de Neutrones , Termodinámica
5.
Org Lett ; 12(13): 3100-3, 2010 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-20527907

RESUMEN

Arylphosphines and dialkylbiarylphosphines react with singlet oxygen to form phosphine oxides and phosphinate esters. For mixed arylphosphines, the most electron-rich aryl group migrates to form the phosphinate, while for dialkylbiarylphosphines migration of the alkyl group occurs. Dialkylbiarylphosphines also yield arene epoxides, especially in electron-rich systems. Phosphinate ester formation is increased at high temperature, while protic solvents increase the yield of epoxide. The product distribution provides evidence for Buchwald's recent conformational model for the aerobic oxidation of dialkylbiarylphosphines.


Asunto(s)
Ésteres/síntesis química , Óxidos/síntesis química , Fosfinas/química , Ésteres/química , Estructura Molecular , Oxidación-Reducción , Óxidos/química , Oxígeno/química , Fotoquímica , Estereoisomerismo
6.
Chem Commun (Camb) ; (28): 4215-7, 2009 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-19585025

RESUMEN

An intensely phosphorescent Pt complex in cyclohexane is efficiently quenched by exciplex formation with extremely weak Lewis bases such as toluene and other aromatic compounds.

7.
J Org Chem ; 74(1): 359-69, 2009 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-19053607

RESUMEN

Two chiral tetraphenylenes, 2,15-dideuteriotetraphenylene (7) and 2,7-dimethyltetraphenylene (15) were synthesized and resolved to address the tetraphenylene inversion barrier problem. Neutron diffraction investigation of enantiopure 7 showed that the molecule retained its chirality integrity during its synthesis from enantiopure precursors and therefore rules out the possibility of the tetraphenylene framework possessing a low-energy barrier to inversion. Thermal study on 15 and tetraphenylene 1 further revealed that their inversion barriers were not overcome up to 600 degrees C, at which temperature these compounds underwent skeletal contraction into triphenylene with activation energies of 62.8 and 58.2 kcal/mol, respectively. This result is supported by computational studies which yielded an inversion barrier of 135 kcal/mol for tetraphenylene as a consequence of the peri-hydrogen repulsions at its planar conformation.


Asunto(s)
Compuestos de Terfenilo/química , Simulación por Computador , Modelos Químicos , Estructura Molecular , Difracción de Neutrones , Estereoisomerismo , Compuestos de Terfenilo/síntesis química , Factores de Tiempo
9.
Acta Crystallogr D Biol Crystallogr ; 64(Pt 4): 466-70, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18391413

RESUMEN

Disintegrins are a family of small (4-14 kDa) proteins that bind to another class of proteins, integrins. Therefore, as integrin inhibitors, they can be exploited as anticancer and antiplatelet agents. Acostatin, an alphabeta heterodimeric disintegrin, has been isolated from the venom of Southern copperhead (Agkistrodon contortrix contortrix). The three-dimensional structure of acostatin has been determined by macromolecular crystallography using the molecular-replacement method. The asymmetric unit of the acostatin crystals consists of two heterodimers. The structure has been refined to an R(work) and R(free) of 18.6% and 21.5%, respectively, using all data in the 20-1.7 A resolution range. The structure of all subunits is similar and is well ordered into N-terminal and C-terminal clusters with four intramolecular disulfide bonds. The overall fold consists of short beta-sheets, each of which is formed by a pair of antiparallel beta-strands connected by beta-turns and flexible loops of different lengths. Conformational flexibility is found in the RGD loops and in the C-terminal segment. The interaction of two N-terminal clusters via two intermolecular disulfide bridges anchors the alphabeta chains of the acostatin dimers. The C-terminal clusters of the heterodimer project in opposite directions and form a larger angle between them in comparison with other dimeric disintegrins. Extensive interactions are observed between two heterodimers, revealing an alphabetabetaalpha acostatin tetramer. Further experiments are required to identify whether the alphabetabetaalpha acostatin complex plays a functional role in vivo.


Asunto(s)
Agkistrodon/metabolismo , Venenos de Crotálidos/química , Desintegrinas/química , Secuencia de Aminoácidos , Animales , Recolección de Datos , Dimerización , Disulfuros/química , Isoleucina/química , Modelos Moleculares , Datos de Secuencia Molecular , Conformación Proteica , Estructura Secundaria de Proteína , Ácido Pirrolidona Carboxílico/química
10.
J Am Chem Soc ; 130(12): 3888-91, 2008 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-18307342

RESUMEN

A four-coordinate hydrogen atom has been unambiguously located, by single-crystal neutron diffraction for the first time, in the center of the tetrahedral metal complex Y4H8(Cp')4(THF) [Cp'=C5Me4(SiMe3)]. The core of the molecule consists of a tetranuclear cluster with one interstitial, one face-bridging, and six edge-bridging hydride ligands. The compound was prepared via the reaction of YCp'(CH2SiMe3)2(THF) with gaseous H2. Neutron data were collected on a 4 mm3 crystal at the Quasi-Laue diffractometer VIVALDI at ILL (Grenoble)1a and on an 8 mm3 crystal at the SXD diffractometer at ISIS (Didcot). The final agreement factor is R = 8.9% for 4171 reflections. The existence of 4-coordinate hydrogen now completes the series of high-connectivity hydride ligands located in the interstitial cavities of molecular cluster complexes. We had previously reported the existence of 6-coordinate hydrogen in the octahedral cavity of [HCo6(CO)15]- in 1979, and 5-coordinate hydrogen in the square pyramidal cavities of [H2Rh13(CO)24]3- in 1997, also via single-crystal neutron analyses.

11.
Acta Crystallogr A ; 64(Pt 1): 12-22, 2008 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18156668

RESUMEN

Neutron diffraction provides an experimental method of directly locating H atoms in proteins, a technique complementary to ultra-high-resolution X-ray diffraction. Three different types of neutron diffractometers for biological macromolecules have been constructed in Japan, France and the USA, and they have been used to determine the crystal structures of proteins up to resolution limits of 1.5-2.5 A. Results relating to H-atom positions and hydration patterns in proteins have been obtained from these studies. Examples include the geometrical details of hydrogen bonds, the role of H atoms in enzymatic activity, CH3 configuration, H/D exchange in proteins and oligonucleotides, and the dynamical behavior of hydration structures, all of which have been extracted from these structural results and reviewed. Other techniques, such as the growth of large single crystals and a database of hydrogen and hydration in proteins, are described.


Asunto(s)
ADN/química , Difracción de Neutrones/métodos , Proteínas/química , Cristalización , Medición de Intercambio de Deuterio , Histidina/química , Enlace de Hidrógeno , Modelos Moleculares , Agua/química
12.
Inorg Chem ; 46(10): 3865-75, 2007 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-17439204

RESUMEN

The electronic properties of the cyclometalated (CwedgeN) complexes of iridium and platinum metals with a catechol ligand have been studied experimentally and computationally. The synthesis and characterization of (p-tolylpyridine)Ir(3,5-di-tert-butylcatechol) (abbreviated Ir-sq) and (2,4-diflorophenylpyridine)Pt(3,5-di-tert-butylcatechol) (abbreviated Pt-sq) are reported along with their structural, spectral, and electrochemical properties. Reaction of the 3,5-di-tert-butylcatechol (DTBCat) ligand with the prepared cyclometalated metal complex was carried out in air in the presence of a base. The resulting complexes are air stable and are paramagnetic with the unpaired electron residing mainly on the catechol ligand. The bond lengths obtained from X-ray structure analysis and the theoretical results suggest the semiquinone form of the catechol ligand. Low-energy, intense (approximately 10(3) M-1 cm-1) transitions are observed in the visible to near-infrared region (600-700 nm) of the absorption spectra of the metal complexes. Electrochemically, the complexes exhibit a reversible reduction of the semiquinone form to the catechol form of the ligand and an irreversible oxidation to the unstable quinone form of the ligand. The noninnocent catechol ligand plays a significant role in the electronic properties of the metal complexes. Density functional theory (DFT) and time-dependent density functional theory (TD-DFT) calculations on the two open-shell molecules provide the ground-state and excited-state energies of the molecular orbitals involved in the observed low-energy transitions. The spin density in the two complexes resides mainly on the catechol ligand. The intense transition arises from excitation of the beta electron from a HOMO-n (n = 1 or 2 here) to the LUMO, rather than from the excitation of the unpaired alpha electron.

13.
Inorg Chem ; 46(1): 147-60, 2007 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-17198423

RESUMEN

This paper deals with the preparation and structural investigation of asymmetric bis(silyl) niobocene hydrides, Cp2Nb(SiHMe2)(H)(SiXMe2) (2; X = F (a), Cl (b), Br (c), I (d)) and Cp2Nb(SiXMe2)(H)(SiYMe2) (X,Y= F-I; X not equal Y). Complexes 2a-d were prepared by selective electrophilic activation of the Si-H bond in Cp2Nb(SiHMe2)2(H). The Cp2Nb(SiXMe2)(H)(SiYMe2) complexes were prepared by electrophilic activation of the Si-H bond in 2a-d and, in some cases, by electrophilic exchange of the X halides in Cp2Nb(SiXMe2)2(H) (1) for other halides, Y. The structures of complexes 2b and 2c have been studied by X-ray and neutron diffraction (ND). The ND results unequivocally established that the hydride ligand in 2c is shifted toward the SiBrMe2 ligand and that in 2b is positioned symmetrically between two nonequivalent silyl groups, with the H...SiClMe2 distance being shorter because of the shorter Nb-SiClMe2 bond length. Analysis of the X-ray structures of complexes 2a-d and complexes Cp2Nb(SiXMe2)(H)(SiYMe2) shows that the largest structural distortions are observed for the silyl groups substituted by heavy halogen atoms. These trends are rationalized in terms of stronger interligand hypervalent interactions (IHI) Nb-H...Si-X for heavy atoms X from Group 7.

15.
Org Lett ; 8(22): 5125-8, 2006 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-17048859

RESUMEN

Singlet oxygen reacts with binaphthyl phosphine derivatives such as 1,1'-binaphthyl di-tert-butyl phosphine to form the corresponding binaphthyl-2-oxide phosphine oxides. This new intramolecular arene epoxidation reaction proceeds with complete retention of stereochemistry. The binaphthyl-2-oxide di-tert-butyl phosphine oxide undergoes a slow "NIH-rearrangement" to form the corresponding hydroxylated product. A transient phosphadioxirane intermediate has been directly observed by low-temperature NMR. Kinetic analyses show that all of the phosphadioxirane intermediate is converted to product. [reaction: see text]


Asunto(s)
Compuestos Heterocíclicos de 4 o más Anillos/síntesis química , Naftalenos/síntesis química , Catálisis , Compuestos Heterocíclicos de 4 o más Anillos/química , Espectroscopía de Resonancia Magnética , Conformación Molecular , Estructura Molecular , Naftalenos/química , Oxígeno/química , Fosfinas/química
16.
Inorg Chem ; 45(19): 7981-4, 2006 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-16961394

RESUMEN

The crystal structure of NF4BF4 has been reexamined. The low-temperature X-ray structure and solid-state 19F MAS NMR spectra are in agreement with the conclusions reached from the vibrational spectra, that solid NF4+ salts contain only tetrahedral NF4+ cations. The alleged observation of two kind of nontetrahedral NF4+ cations in several previous crystal structures is attributed to incorrectly solved structures and, possibly, problems caused by disorder or twinning. It is further evidence for the dangers of over-reliance on crystal structures. Flawed crystal structures can give rise to either bad or unwarranted theory.

17.
Inorg Chem ; 44(24): 8723-32, 2005 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-16296826

RESUMEN

A series of cationic Ir(III) complexes with the general formula (C/N)2Ir(N/N)(+)PF6- featuring bis-cyclometalated 1-phenylpyrazolyl-N,C2' (C/N) and neutral diimine (N/N, e.g., 2,2'-bipyridyl) ligands were synthesized and their electrochemical, photophysical, and electroluminescent properties studied. Density functional theory calculations indicate that the highest occupied molecular orbital of the compounds is comprised of a mixture of Ir d and phenylpyrazolyl-based orbitals, while the lowest unoccupied molecular orbital has predominantly diimine character. The oxidation and reduction potentials of the complexes can be independently varied by systematic modification of either the C/N or N/N ligands with donor or acceptor substituents. The electrochemical redox gaps (E(ox)-E(red)) were adjusted to span a range between 2.39 and 3.08 V. All of the compounds have intense absorption bands in the UV region assigned to 1(pi-pi*) transitions and weaker charge-transfer (CT) transitions that extend to the visible region. The complexes display intense luminescence both in fluid solution and as neat solids at 298 K that is assigned to emission from a triplet metal-ligand-to-ligand CT (3MLLCT) excited state. The energy of the 3MLLCT state varies in nearly direct proportion to the size of the electrochemical redox gap, which leads to emission colors that vary from red to blue. Three of the (C/N)2Ir(N/N)(+)PF6- complexes were used as active materials in single-layer light-emitting electrochemical cells (LECs). Single-layer electroluminescent devices were fabricated by spin-coating the Ir complexes onto an ITO-PEDOT/PSS substrate followed by deposition of aluminum contacts onto the organic film. Devices were prepared that give blue, green, and red electroluminescence spectra (lambda(max) = 492, 542, and 635 nm, respectively), which are nearly identical with the photoluminescence spectra of thin films of the same materials. The single-layer LECs give peak external quantum efficiencies of 4.7, 6.9, and 7.4% for the blue, green, and red emissive devices, respectively.

18.
Inorg Chem ; 44(22): 7992-8003, 2005 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-16241149

RESUMEN

Two approaches are reported to achieve efficient blue to near-UV emission from triscyclometalated iridium(III) materials related to the previously reported complex, fac-Ir(ppz)(3) (ppz = 1-phenylpyrazolyl-N,C(2)'). The first involves replacement of the phenyl group of the ppz ligand with a 9,9-dimethyl-2-fluorenyl group, i.e., fac-tris(1-[(9,9-dimethyl-2-fluorenyl)]pyrazolyl-N,C(2)')iridium(III), abbreviated as fac-Ir(flz)(3). Crystallographic analysis reveals that both fac-Ir(flz)(3) and fac-Ir(ppz)(3) have a similar coordination environment around the Ir center. The absorption and emission spectra of fac-Ir(flz)(3) are red shifted from those of fac-Ir(ppz)(3). The fac-Ir(flz)(3) complex gives blue photoluminescence (PL) with a high efficiency (lambda(max) = 480 nm, phi(PL) = 0.38) at room temperature. The lifetime and quantum efficiency were used to determine the radiative and nonradiative rates (1.0 x 10(4) and 2.0 x 10(4) s(-1), respectively). The second approach utilizes N-heterocyclic carbene (NHC) ligands to form triscyclometalated Ir complexes. Complexes with two different NHC ligands, i.e., iridium tris(1-phenyl-3-methylimidazolin-2-ylidene-C,C(2)'), abbreviated as Ir(pmi)(3), and iridium tris(1-phenyl-3-methylbenzimidazolin-2-ylidene-C,C(2)'), abbreviated as Ir(pmb)(3), were both isolated as facial and meridianal isomers. Comparison of the crystallographic structures of the fac- and mer-isomers of Ir(pmb)(3) with the corresponding Ir(ppz)(3) isomers indicates that the imidazolyl-carbene ligand has a stronger trans influence than pyrazolyl and, thus, imparts a greater ligand field strength. Both fac-Ir(pmi)(3) and fac-Ir(pmb)(3) complexes display strong metal-to-ligand-charge-transfer absorption transitions in the UV (lambda = 270-350 nm) and phosphoresce in the near-UV region (E(0)(-)(0) = 380 nm) at room temperature with phi(PL) values of 0.02 and 0.04, respectively. The radiative decay rates for fac-Ir(pmi)(3) and fac-Ir(pmb)(3) (5 x 10(4) s(-1) and 18 x 10(4) s(-1), respectively) are somewhat higher than that of fac-Ir(flz)(3), but the nonradiative rates are two orders of magnitude faster (i.e., (2-4) x 10(6) s(-1)).

20.
Inorg Chem ; 44(7): 2459-64, 2005 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-15792484

RESUMEN

The complex Zr(9-BBN)4 [9-BBN = (mu-H)2BC8H14] has been synthesized via the reaction of K(9-BBN) with ZrCl4 in diethyl ether. The structure of the title compound has been determined by X-ray and neutron single-crystal diffraction techniques. Each 9-BBN ligand is coordinated to the Zr atom via two B-H-Zr bridges, and these metal-ligand bonding interactions are further augmented by three prominent C-H...Zr agostic interactions. Average molecular parameters derived from the neutron analysis: Zr-H = 2.051(8) A, B-H = 1.286(7) A, Zr...B = 2.409(6) A, Zr-H-B = 87.7(4) degrees , H-Zr-H = 58.9(3) degrees . The Zr...H distances corresponding to the three C-H...Zr agostic interactions are 2.424(7), 2.663(8), and 2.551(7) A. The fourth potential C-H...Zr interaction has a Zr...H distance [3.146(7) A] that is too long to be considered in the agostic range. Single-crystal X-ray diffraction data were collected on an Enraf-Nonius Kappa CCD diffraction system, and neutron diffraction data were collected on the quasi-Laue diffractometer VIVALDI at the Institut Laue-Langevin; the final agreement factor for the neutron analysis is 6.52% for 2557 reflections with I > 2sigma(I).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...