Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 3380, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38643172

RESUMEN

While 3D chromatin organization in topologically associating domains (TADs) and loops mediating regulatory element-promoter interactions is crucial for tissue-specific gene regulation, the extent of their involvement in human Mendelian disease is largely unknown. Here, we identify 7 families presenting a new cardiac entity associated with a heterozygous deletion of 2 CTCF binding sites on 4q25, inducing TAD fusion and chromatin conformation remodeling. The CTCF binding sites are located in a gene desert at 1 Mb from the Paired-like homeodomain transcription factor 2 gene (PITX2). By introducing the ortholog of the human deletion in the mouse genome, we recapitulate the patient phenotype and characterize an opposite dysregulation of PITX2 expression in the sinoatrial node (ectopic activation) and ventricle (reduction), respectively. Chromatin conformation assay performed in human induced pluripotent stem cell-derived cardiomyocytes harboring the minimal deletion identified in family#1 reveals a conformation remodeling and fusion of TADs. We conclude that TAD remodeling mediated by deletion of CTCF binding sites causes a new autosomal dominant Mendelian cardiac disorder.


Asunto(s)
Células Madre Pluripotentes Inducidas , Humanos , Animales , Ratones , Factor de Unión a CCCTC/genética , Factor de Unión a CCCTC/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Cromatina/genética , Proteínas de Unión al ADN/metabolismo , Genoma
2.
Stem Cell Res ; 77: 103396, 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38522388

RESUMEN

Mutations in the DES gene, which encodes the intermediate filament desmin, lead to desminopathy, a rare disease characterized by skeletal muscle weakness and different forms of cardiomyopathies associated with cardiac conduction defects and arrhythmias. We generated human induced pluripotent stem cells (hiPSC) from a patient carrying the DES p.R406W mutation, and employed CRISPR/Cas9 to rectify the mutation in the patient's hiPSC line and introduced the mutation in an hiPSC line from a control individual unrelated to the patient. These hiPSC lines represent useful models for delving into the mechanisms of desminopathy and developing new therapeutic approaches.

3.
JACC Clin Electrophysiol ; 9(8 Pt 1): 1248-1261, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37227351

RESUMEN

BACKGROUND: Brugada syndrome is a significant cause of sudden cardiac death (SCD), but the underlying mechanisms remain hypothetical. OBJECTIVES: This study aimed to elucidate this knowledge gap through detailed ex vivo human heart studies. METHODS: A heart was obtained from a 15-year-old adolescent boy with normal electrocardiogram who experienced SCD. Postmortem genotyping was performed, and clinical examinations were done on first-degree relatives. The right ventricle was optically mapped, followed by high-field magnetic resonance imaging and histology. Connexin-43 and NaV1.5 were localized by immunofluorescence, and RNA and protein expression levels were studied. HEK-293 cell surface biotinylation assays were performed to examine NaV1.5 trafficking. RESULTS: A Brugada-related SCD diagnosis was established for the donor because of a SCN5A Brugada-related variant (p.D356N) inherited from his mother, together with a concomitant NKX2.5 variant of unknown significance. Optical mapping demonstrated a localized epicardial region of impaired conduction near the outflow tract, in the absence of repolarization alterations and microstructural defects, leading to conduction blocks and figure-of-8 patterns. NaV1.5 and connexin-43 localizations were normal in this region, consistent with the finding that the p.D356N variant does not affect the trafficking, nor the expression of NaV1.5. Trends of decreased NaV1.5, connexin-43, and desmoglein-2 protein levels were noted; however, the RT-qPCR results suggested that the NKX2-5 variant was unlikely to be involved. CONCLUSIONS: This study demonstrates for the first time that SCD associated with a Brugada-SCN5A variant can be caused by localized functionally, not structurally, impaired conduction.


Asunto(s)
Síndrome de Brugada , Masculino , Adolescente , Humanos , Células HEK293 , Electrocardiografía , Trastorno del Sistema de Conducción Cardíaco , Muerte Súbita Cardíaca , Conexinas
4.
Cardiovasc Res ; 119(3): 759-771, 2023 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-36001550

RESUMEN

AIMS: Degenerative mitral valve dystrophy (MVD) leading to mitral valve prolapse is the most frequent form of MV disease, and there is currently no pharmacological treatment available. The limited understanding of the pathophysiological mechanisms leading to MVD limits our ability to identify therapeutic targets. This study aimed to reveal the main pathophysiological pathways involved in MVD via the multimodality imaging and transcriptomic analysis of the new and unique knock-in (KI) rat model for the FilaminA-P637Q (FlnA-P637Q) mutation associated-MVD. METHODS AND RESULTS: Wild-type (WT) and KI rats were evaluated morphologically, functionally, and histologically between 3-week-old and 3-to-6-month-old based on Doppler echocardiography, 3D micro-computed tomography (microCT), and standard histology. RNA-sequencing and Assay for Transposase-Accessible Chromatin (ATAC-seq) were performed on 3-week-old WT and KI mitral valves and valvular cells, respectively, to highlight the main signalling pathways associated with MVD. Echocardiographic exploration confirmed MV elongation (2.0 ± 0.1 mm vs. 1.8 ± 0.1, P = 0.001), as well as MV thickening and prolapse in KI animals compared to WT at 3 weeks. 3D MV volume quantified by microCT was significantly increased in KI animals (+58% vs. WT, P = 0.02). Histological analyses revealed a myxomatous remodelling in KI MV characterized by proteoglycans accumulation. A persistent phenotype was observed in adult KI rats. Signalling pathways related to extracellular matrix homeostasis, response to molecular stress, epithelial cell migration, endothelial to mesenchymal transition, chemotaxis and immune cell migration, were identified based on RNA-seq analysis. ATAC-seq analysis points to the critical role of transforming growth factor-ß and inflammation in the disease. CONCLUSION: The KI FlnA-P637Q rat model mimics human myxomatous MVD, offering a unique opportunity to decipher pathophysiological mechanisms related to this disease. Extracellular matrix organization, epithelial cell migration, response to mechanical stress, and a central contribution of immune cells are highlighted as the main signalling pathways leading to myxomatous MVD. Our findings pave the road to decipher underlying molecular mechanisms and the specific role of distinct cell populations in this context.


Asunto(s)
Prolapso de la Válvula Mitral , Válvula Mitral , Adulto , Humanos , Ratas , Animales , Lactante , Válvula Mitral/metabolismo , Filaminas/genética , Filaminas/metabolismo , Transcriptoma , Microtomografía por Rayos X , Prolapso de la Válvula Mitral/patología , Fenotipo
5.
STAR Protoc ; 3(4): 101680, 2022 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-36115027

RESUMEN

This manuscript proposes an efficient and reproducible protocol for the generation of genetically modified human induced pluripotent stem cells (hiPSCs) by genome editing using CRISPR-Cas9 technology. Here, we describe the experimental strategy for generating knockout (KO) and knockin (KI) clonal populations of hiPSCs using single-cell sorting by flow cytometry. We efficiently achieved up to 15 kb deletions, molecular tag insertions, and single-nucleotide editing in hiPSCs. We emphasize the efficacy of this approach in terms of cell culture time. For complete details on the use and execution of this protocol, please refer to Canac et al. (2022) and Bray et al. (2022).


Asunto(s)
Edición Génica , Células Madre Pluripotentes Inducidas , Humanos , Edición Génica/métodos , Sistemas CRISPR-Cas , Células Clonales , Técnicas de Cultivo de Célula
7.
Nat Genet ; 54(3): 232-239, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35210625

RESUMEN

Brugada syndrome (BrS) is a cardiac arrhythmia disorder associated with sudden death in young adults. With the exception of SCN5A, encoding the cardiac sodium channel NaV1.5, susceptibility genes remain largely unknown. Here we performed a genome-wide association meta-analysis comprising 2,820 unrelated cases with BrS and 10,001 controls, and identified 21 association signals at 12 loci (10 new). Single nucleotide polymorphism (SNP)-heritability estimates indicate a strong polygenic influence. Polygenic risk score analyses based on the 21 susceptibility variants demonstrate varying cumulative contribution of common risk alleles among different patient subgroups, as well as genetic associations with cardiac electrical traits and disorders in the general population. The predominance of cardiac transcription factor loci indicates that transcriptional regulation is a key feature of BrS pathogenesis. Furthermore, functional studies conducted on MAPRE2, encoding the microtubule plus-end binding protein EB2, point to microtubule-related trafficking effects on NaV1.5 expression as a new underlying molecular mechanism. Taken together, these findings broaden our understanding of the genetic architecture of BrS and provide new insights into its molecular underpinnings.


Asunto(s)
Síndrome de Brugada , Alelos , Síndrome de Brugada/complicaciones , Síndrome de Brugada/genética , Síndrome de Brugada/metabolismo , Susceptibilidad a Enfermedades/complicaciones , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Humanos , Proteínas Asociadas a Microtúbulos/genética , Mutación , Canal de Sodio Activado por Voltaje NAV1.5/genética , Canal de Sodio Activado por Voltaje NAV1.5/metabolismo , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA