Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 182
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-39377900

RESUMEN

Recently, an optimal dosing algorithm (OptiDose) was developed to compute the optimal drug doses for any pharmacometrics model for a given dosing scenario. In the present work, we enhance the OptiDose concept to compute optimal drug dosing with respect to both efficacy and safety targets. Usually, these are not of equal importance, but one is a top priority, that needs to be satisfied, whereas the other is a secondary target and should be achieved as good as possible without failing the top priority target. Mathematically, this leads to state-constrained optimal control problems. In this paper, we elaborate how to set up such problems and transform them into classical unconstrained optimal control problems which can be solved in NONMEM. Three different optimal dosing tasks illustrate the impact of the proposed enhanced OptiDose method.

2.
Artículo en Inglés | MEDLINE | ID: mdl-39153154

RESUMEN

Pharmacokinetics and pharmacodynamics of many biologics are influenced by their complex binding to biological receptors. Biologics consist of diverse groups of molecules with different binding kinetics to its receptors including IgG with simple one-to-one drug receptor bindings, bispecific antibody (BsAb) that binds to two different receptors, and antibodies that can bind to six or more identical receptors. As the binding process is typically much faster than elimination (or internalization) and distribution processes, quasi-equilibrium (QE) binding models are commonly used to describe drug-receptor binding kinetics of biologics. However, no general QE modeling framework is available to describe complex binding kinetics for diverse classes of biologics. In this paper, we describe novel approaches of using differential algebraic equations (DAE) to solve three QE multivalent drug-receptor binding (QEMB) models. The first example describes the binding kinetics of three-body equilibria of BsAb that binds to 2 different receptors for trimer formation. The second example models an engineered IgG variant (Multabody) that can bind to 24 identical target receptors. The third example describes an IgG with modified neonatal Fc receptor (FcRn) binding affinity that competes for the same FcRn receptor as endogenous IgG. The model parameter estimates were obtained by fitting the model to all data simultaneously. The models allowed us to study potential roles of cooperative binding on bell-shaped drug exposure-response relationships of BsAb, and concentration-depended distribution of different drug-receptor complexes for Multabody. This DAE-based QEMB model platform can serve as an important tool to better understand complex binding kinetics of diverse classes of biologics.

3.
J Chem Phys ; 161(3)2024 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-39017429

RESUMEN

We investigated the structure of ice under nanoporous confinement in periodic mesoporous organosilicas (PMOs) with different organic functionalities and pore diameters between 3.4 and 4.9 nm. X-ray scattering measurements of the system were performed at temperatures between 290 and 150 K. We report the emergence of ice I with both hexagonal and cubic characteristics in different porous materials, as well as an alteration of the lattice parameters when compared to bulk ice. This effect is dependent on the pore diameter and the surface chemistry of the respective PMO. Investigations regarding the orientation of hexagonal ice crystals relative to the pore wall using x-ray cross correlation analysis reveal one or more discrete preferred orientation in most of the samples. For a pore diameter of around 3.8 nm, stronger correlation peaks are present in more hydrophilically functionalized pores and seem to be connected to stronger shifts in the lattice parameters.

4.
Conscious Cogn ; 123: 103721, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39053185

RESUMEN

The study aimed to investigate the effects of an embodied mindfulness treatment on chronometric mental rotation. Forty-four women and 47 men participated and were randomly divided into two groups: a mindfulness induction group and a control group. They completed two sets of 150 mental rotation tasks with cube figures each. Subjective cognitive effort (measured after each block), reaction time, and accuracy were analyzed using linear mixed models with the factors of time, mindfulness, angular disparity, and gender. The significant finding was a three-way interaction between pre-post testing, mindfulness, and gender for reaction times. This interaction suggests that women might benefit more from the mindfulness induction, while men may benefit more from the control condition. The analysis of subjective cognitive effort indicates that women and men perceive the same cognitive effort when solving cube-figure tasks.


Asunto(s)
Atención Plena , Humanos , Femenino , Masculino , Adulto , Adulto Joven , Percepción Espacial/fisiología , Rotación , Desempeño Psicomotor/fisiología , Tiempo de Reacción/fisiología , Imaginación/fisiología , Factores Sexuales
5.
Anaerobe ; 88: 102873, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38844261

RESUMEN

C. difficile infection (CDI) is a costly and increasing burden on the healthcare systems of many developed countries due to the high rates of nosocomial infections. Despite the availability of several antibiotics with high response rates, effective treatment is hampered by recurrent infections. One potential mechanism for recurrence is the existence of C. difficile biofilms in the gut which persist through the course of antibiotics. In this review, we describe current developments in understanding the molecular mechanisms by which C. difficile biofilms form and are stabilized through extracellular biomolecular interactions.


Asunto(s)
Biopelículas , Clostridioides difficile , Infecciones por Clostridium , Biopelículas/crecimiento & desarrollo , Biopelículas/efectos de los fármacos , Clostridioides difficile/fisiología , Clostridioides difficile/crecimiento & desarrollo , Clostridioides difficile/genética , Humanos , Infecciones por Clostridium/microbiología , Antibacterianos/farmacología
6.
Cell Rep ; 43(5): 114240, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38753486

RESUMEN

Adipose tissue remodeling and dysfunction, characterized by elevated inflammation and insulin resistance, play a central role in obesity-related development of type 2 diabetes (T2D) and cardiovascular diseases. Long intergenic non-coding RNAs (lincRNAs) are important regulators of cellular functions. Here, we describe the functions of linc-ADAIN (adipose anti-inflammatory), an adipose lincRNA that is downregulated in white adipose tissue of obese humans. We demonstrate that linc-ADAIN knockdown (KD) increases KLF5 and interleukin-8 (IL-8) mRNA stability and translation by interacting with IGF2BP2. Upregulation of KLF5 and IL-8, via linc-ADAIN KD, leads to an enhanced adipogenic program and adipose tissue inflammation, mirroring the obese state, in vitro and in vivo. KD of linc-ADAIN in human adipose stromal cell (ASC) hTERT adipocytes implanted into mice increases adipocyte size and macrophage infiltration compared to implanted control adipocytes, mimicking hallmark features of obesity-induced adipose tissue remodeling. linc-ADAIN is an anti-inflammatory lincRNA that limits adipose tissue expansion and lipid storage.


Asunto(s)
Adipogénesis , Interleucina-8 , Factores de Transcripción de Tipo Kruppel , Estabilidad del ARN , ARN Largo no Codificante , Animales , Humanos , Ratones , Adipocitos/metabolismo , Adipogénesis/genética , Tejido Adiposo/metabolismo , Inflamación/patología , Inflamación/genética , Inflamación/metabolismo , Interleucina-8/metabolismo , Interleucina-8/genética , Factores de Transcripción de Tipo Kruppel/metabolismo , Factores de Transcripción de Tipo Kruppel/genética , Obesidad/metabolismo , Obesidad/genética , Obesidad/patología , Estabilidad del ARN/genética , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , ARN Mensajero/metabolismo , ARN Mensajero/genética , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética
8.
bioRxiv ; 2024 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-38463994

RESUMEN

Human genetic studies have repeatedly associated ADAMTS7 with atherosclerotic cardiovascular disease. Subsequent investigations in mice demonstrated that ADAMTS7 is proatherogenic and induced in response to vascular injury and that the proatherogenicity of ADAMTS7, a secreted protein, is due to its catalytic activity. However, the cell-specific mechanisms governing ADAMTS7 proatherogenicity remain unclear. To determine which vascular cell types express ADAMTS7, we interrogated single-cell RNA sequencing of human carotid atherosclerosis and found ADAMTS7 expression in smooth muscle cells (SMCs), endothelial cells (ECs), and fibroblasts. We subsequently created SMC- and EC-specific Adamts7 conditional knockout and transgenic mice. Conditional knockout of Adamts7 in either cell type is insufficient to reduce atherosclerosis, whereas transgenic induction in either cell type increases atherosclerosis. In SMC transgenic mice, this increase coincides with an expansion of lipid-laden SMC foam cells and decreased fibrous cap formation. RNA-sequencing in SMCs revealed an upregulation of lipid uptake genes typically assigned to macrophages. Subsequent experiments demonstrated that ADAMTS7 increases SMC oxLDL uptake through increased CD36 levels. Furthermore, Cd36 expression is increased due to increased levels of PU.1, a transcription factor typically associated with myeloid fate determination. In summary, Adamts7 expression in either SMCs or ECs promotes SMC foam cell formation and atherosclerosis. In SMCs, ADAMTS7 promotes oxLDL uptake via increased PU.1 and Cd36 expression, thereby increasing SMC foam cell formation and atherosclerosis.

9.
Arterioscler Thromb Vasc Biol ; 44(4): 930-945, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38385291

RESUMEN

BACKGROUND: Atherosclerotic plaques are complex tissues composed of a heterogeneous mixture of cells. However, our understanding of the comprehensive transcriptional and phenotypic landscape of the cells within these lesions is limited. METHODS: To characterize the landscape of human carotid atherosclerosis in greater detail, we combined cellular indexing of transcriptomes and epitopes by sequencing and single-cell RNA sequencing to classify all cell types within lesions (n=21; 13 symptomatic) to achieve a comprehensive multimodal understanding of the cellular identities of atherosclerosis and their association with clinical pathophysiology. RESULTS: We identified 25 cell populations, each with a unique multiomic signature, including macrophages, T cells, NK (natural killer) cells, mast cells, B cells, plasma cells, neutrophils, dendritic cells, endothelial cells, fibroblasts, and smooth muscle cells (SMCs). Among the macrophages, we identified 2 proinflammatory subsets enriched in IL-1B (interleukin-1B) or C1Q expression, 2 TREM2-positive foam cells (1 expressing inflammatory genes), and subpopulations with a proliferative gene signature and SMC-specific gene signature with fibrotic pathways upregulated. Further characterization revealed various subsets of SMCs and fibroblasts, including SMC-derived foam cells. These foamy SMCs were localized in the deep intima of coronary atherosclerotic lesions. Utilizing cellular indexing of transcriptomes and epitopes by sequencing data, we developed a flow cytometry panel, using cell surface proteins CD29, CD142, and CD90, to isolate SMC-derived cells from lesions. Lastly, we observed reduced proportions of efferocytotic macrophages, classically activated endothelial cells, and contractile and modulated SMC-derived cells, while inflammatory SMCs were enriched in plaques of clinically symptomatic versus asymptomatic patients. CONCLUSIONS: Our multimodal atlas of cell populations within atherosclerosis provides novel insights into the diversity, phenotype, location, isolation, and clinical relevance of the unique cellular composition of human carotid atherosclerosis. These findings facilitate both the mapping of cardiovascular disease susceptibility loci to specific cell types and the identification of novel molecular and cellular therapeutic targets for the treatment of the disease.


Asunto(s)
Aterosclerosis , Enfermedades de las Arterias Carótidas , Placa Aterosclerótica , Humanos , Células Endoteliales/metabolismo , Aterosclerosis/patología , Placa Aterosclerótica/patología , Enfermedades de las Arterias Carótidas/patología , Epítopos/metabolismo , Miocitos del Músculo Liso/metabolismo
10.
J Pharm Sci ; 113(1): 257-267, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37926235

RESUMEN

OBJECTIVES: Cell trafficking encompasses movement of the immune system cells (e.g., granulocytes, lymphocytes) between the blood and the extravascular tissues (e.g., lymph nodes). Corticosteroids are known to suppress cell trafficking. The age-structured cell population models introduce the transit time as a structure that allows one to quantify the distribution of times the immune cells spend in the blood and the extravascular tissues. The objective of this work is to develop an age-structured cell population model describing drug effects on cell trafficking and to implement the model in pharmacometric software to enable parameter estimation and simulations. METHODS: We adopted the well-known McKendrick age-structured population model to describe the age distributions in two cell populations: blood cells and cells in the extravascular space. The hazard of cell recirculation from the extravascular tissues was age dependent and described by the Weibull function with the shape ν and scale ß parameters. The drug effect on cell trafficking was modeled as the product of the Emax function of the drug plasma concentration and the Weibull hazard. The model was implemented in NONMEM 7.5.1. The model was applied to the basophil data in 34 healthy subjects who received a single intramuscular or oral dose of 6 mg dexamethasone (DEX). A recently published pharmacokinetic model was applied to describe DEX plasma concentration. Typical values of parameter estimates were further used to simulate the DEX effect of the basophil mean transit time in the extravascular tissues. RESULTS: Simulations of basophil time courses for varying ν demonstrated that the rebound in the blood count data following drug administration is only possible for ν >1. The estimates of model parameters were ν = 3.02, ß = 0.00863 1/h, and IC50 = 7.47 ng/mL. The calculated baseline mean transit times of basophils in the blood 7.2 h and extravascular tissues 104.9 h agree with the values reported in the literature. CONCLUSIONS: We introduced an age-structured population model to describe cell trafficking between the blood and extravascular tissues. The model was adopted to account for the inhibitory drug effect on the cell recirculation. We showed that the age structure is essential to explain the rebound observed in the blood count response to a single dose drug administration. The model was validated using the basophil responses to DEX treatment in healthy subjects.


Asunto(s)
Modelos Biológicos , Programas Informáticos , Humanos , Linfocitos , Relación Dosis-Respuesta a Droga
11.
medRxiv ; 2023 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-37502836

RESUMEN

Background: Atherosclerotic plaques are complex tissues composed of a heterogeneous mixture of cells. However, we have limited understanding of the comprehensive transcriptional and phenotypical landscape of the cells within these lesions. Methods: To characterize the landscape of human carotid atherosclerosis in greater detail, we combined cellular indexing of transcriptomes and epitopes by sequencing (CITE-seq) and single-cell RNA sequencing (scRNA-seq) to classify all cell types within lesions (n=21; 13 symptomatic) to achieve a comprehensive multimodal understanding of the cellular identities of atherosclerosis and their association with clinical pathophysiology. Results: We identified 25 distinct cell populations each having a unique multi-omic signature, including macrophages, T cells, NK cells, mast cells, B cells, plasma cells, neutrophils, dendritic cells, endothelial cells, fibroblasts, and smooth muscle cells (SMCs). Within the macrophage populations, we identified 2 proinflammatory subsets that were enriched in IL1B or C1Q expression, 2 distinct TREM2 positive foam cell subsets, one of which also expressed inflammatory genes, as well as subpopulations displaying a proliferative gene expression signature and one expressing SMC-specific genes and upregulation of fibrotic pathways. An in-depth characterization uncovered several subsets of SMCs and fibroblasts, including a SMC-derived foam cell. We localized this foamy SMC to the deep intima of coronary atherosclerotic lesions. Using CITE-seq data, we also developed the first flow cytometry panel, using cell surface proteins CD29, CD142, and CD90, to isolate SMC-derived cells from lesions. Last, we found that the proportion of efferocytotic macrophages, classically activated endothelial cells, contractile and modulated SMC-derived cell types were reduced, and inflammatory SMCs were enriched in plaques of clinically symptomatic vs. asymptomatic patients. Conclusions: Our multimodal atlas of cell populations within atherosclerosis provides novel insights into the diversity, phenotype, location, isolation, and clinical relevance of the unique cellular composition of human carotid atherosclerosis. This facilitates both the mapping of cardiovascular disease susceptibility loci to specific cell types as well as the identification of novel molecular and cellular therapeutic targets for treatment of the disease.

12.
Curr Atheroscler Rep ; 25(8): 447-455, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37354304

RESUMEN

PURPOSE OF REVIEW: Genome-wide association studies have repeatedly linked the metalloproteinase ADAMTS7 to coronary artery disease. Here we aim to highlight recent findings surrounding the human genetics of ADAMTS7, novel mouse models that investigate ADAMTS7 function, and potential substrates of ADAMTS7 cleavage. RECENT FINDINGS: Recent genome-wide association studies in coronary artery disease have replicated the GWAS signal for ADAMTS7 and shown that the signal holds true even across different ethnic groups. However, the direction of effect in humans remains unclear. A recent novel mouse model revealed that the proatherogenicity of ADAMTS7 is derived from its catalytic functions, while at the translational level, vaccinating mice against ADAMTS7 reduced atherosclerosis. Finally, in vitro proteomics approaches have identified extracellular matrix proteins as candidate substrates that may be causal for the proatherogenicity of ADAMTS7. ADAMTS7 represents an enticing target for therapeutic intervention. The recent studies highlighted here have replicated prior findings, confirming the genetic link between ADAMTS7 and atherosclerosis, while providing further evidence in mice that ADAMTS7 is a targetable proatherogenic enzyme.


Asunto(s)
Aterosclerosis , Enfermedad de la Arteria Coronaria , Humanos , Animales , Ratones , Enfermedad de la Arteria Coronaria/genética , Enfermedad de la Arteria Coronaria/metabolismo , Proteína ADAMTS7/genética , Estudio de Asociación del Genoma Completo , Aterosclerosis/genética
13.
J Phys Chem B ; 127(21): 4922-4930, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37209106

RESUMEN

Hydrated proteins undergo a transition in the deeply supercooled regime, which is attributed to rapid changes in hydration water and protein structural dynamics. Here, we investigate the nanoscale stress-relaxation in hydrated lysozyme proteins stimulated and probed by X-ray Photon Correlation Spectroscopy (XPCS). This approach allows us to access the nanoscale dynamics in the deeply supercooled regime (T = 180 K), which is typically not accessible through equilibrium methods. The observed stimulated dynamic response is attributed to collective stress-relaxation as the system transitions from a jammed granular state to an elastically driven regime. The relaxation time constants exhibit Arrhenius temperature dependence upon cooling with a minimum in the Kohlrausch-Williams-Watts exponent at T = 227 K. The observed minimum is attributed to an increase in dynamical heterogeneity, which coincides with enhanced fluctuations observed in the two-time correlation functions and a maximum in the dynamic susceptibility quantified by the normalized variance χT. The amplification of fluctuations is consistent with previous studies of hydrated proteins, which indicate the key role of density and enthalpy fluctuations in hydration water. Our study provides new insights into X-ray stimulated stress-relaxation and the underlying mechanisms behind spatiotemporal fluctuations in biological granular materials.


Asunto(s)
Proteínas , Agua , Rayos X , Proteínas/química , Temperatura , Agua/química , Termodinámica
14.
Front Neurosci ; 17: 1089134, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36937677

RESUMEN

Introduction: Tau PET imaging has emerged as an important tool to detect and monitor tangle burden in vivo in the study of Alzheimer's disease (AD). Previous studies demonstrated the association of tau burden with cognitive decline in probable AD cohorts. This study introduces a novel approach to analyze tau PET data by constructing individualized tau network structure and deriving its graph theory-based measures. We hypothesize that the network- based measures are a measure of the total tau load and the stage through disease. Methods: Using tau PET data from the AD Neuroimaging Initiative from 369 participants, we determine the network measures, global efficiency, global strength, and limbic strength, and compare with two regional measures entorhinal and tau composite SUVR, in the ability to differentiate, cognitively unimpaired (CU), MCI and AD. We also investigate the correlation of these network and regional measures and a measure of memory performance, auditory verbal learning test for long-term recall memory (AVLT-LTM). Finally, we determine the stages based on global efficiency and limbic strength using conditional inference trees and compare with Braak staging. Results: We demonstrate that the derived network measures are able to differentiate three clinical stages of AD, CU, MCI, and AD. We also demonstrate that these network measures are strongly correlated with memory performance overall. Unlike regional tau measurements, the tau network measures were significantly associated with AVLT-LTM even in cognitively unimpaired individuals. Stages determined from global efficiency and limbic strength, visually resembled Braak staging. Discussion: The strong correlations with memory particularly in CU suggest the proposed technique may be used to characterize subtle early tau accumulation. Further investigation is ongoing to examine this technique in a longitudinal setting.

15.
Int J Comput Dent ; 26(2): 159-166, 2023 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-36602785

RESUMEN

AIM: The aim of the present study was the evaluation of the in vitro performance and fracture force of 3D-printed anterior implant-supported temporary partial dentures (TPDs) with different filler content. MATERIALS AND METHODS: Identical anterior resin-based TPDs (tooth sites 11 to 13; n = eight per material) were 3D printed from methacrylate resins with different filler content. A cartridge polymethyl methacrylate (PMMA) material was used as a reference. After temporary cementation, combined thermal cycling and mechanical loading (TCML) was performed on all the restorations to mimic clinical application. Behavior during TCML and fracture force was determined, and failures were analyzed. Data were statistically investigated (Kolmogorov-Smirnov test, one-way ANOVA; post hoc Bonferroni, Kaplan-Meier survival; α = 0.05). RESULTS: Failure during TCML varied between three failures and total failure during loading time. Mean survival time varied between 93 ± 206 x 103 cycles and 329 ± 84 x 103 cycles. Significantly different survival cycles between the individual materials could be determined (Mantel Cox log-rank test: chi-square: 21,861; degrees of freedom (df) = 4, P < 0.001). A correlation between filler level and survival cycles could be found (Pearson: 0.186, P = 0.065). Fracture values of the surviving TPDs varied between 499 and 835 N. Failures were characterized by fracture of the connector (n = 24) followed by fractures at the abutment (n = 10). CONCLUSIONS: TDPs showed different filler-dependent survival. Individual 3D-printed materials provided comparable or even better performance than a standard cartridge system and might be sufficient for temporary application of at least half a year.


Asunto(s)
Coronas , Fracaso de la Restauración Dental , Humanos , Ensayo de Materiales , Circonio , Impresión Tridimensional
16.
J Pharmacokinet Pharmacodyn ; 50(3): 173-188, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36707456

RESUMEN

Determining a drug dosing recommendation with a PKPD model can be a laborious and complex task. Recently, an optimal dosing algorithm (OptiDose) was developed to compute the optimal doses for any pharmacometrics/PKPD model for a given dosing scenario. In the present work, we reformulate the underlying optimal control problem and elaborate how to solve it with standard commands in the software NONMEM. To demonstrate the potential of the OptiDose implementation in NONMEM, four relevant but substantially different optimal dosing tasks are solved. In addition, the impact of different dosing scenarios as well as the choice of the therapeutic goal on the computed optimal doses are discussed.


Asunto(s)
Algoritmos , Programas Informáticos
17.
J Alzheimers Dis ; 91(3): 1049-1058, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36502320

RESUMEN

BACKGROUND: Older age is a major risk factor for severe COVID-19 disease which has been associated with a variety of neurologic complications, both acutely and chronically. OBJECTIVE: We sought to determine whether milder COVID-19 disease in older vulnerable individuals is also associated with cognitive and behavioral sequelae. METHODS: Neuropsychological, behavioral, and clinical outcomes before and after contracting COVID-19 disease, were compared in members of two ongoing longitudinal studies, the Arizona APOE Cohort and the national Alzheimer's Disease Research Center (ADRC). RESULTS: 152 APOE and 852 ADRC cohort members, mean age overall roughly 70 years, responded to a survey that indicated 21 APOE and 57 ADRC members had contracted COVID-19 before their ensuing (post-COVID) study visit. The mean interval between test sessions that preceded and followed COVID was 2.2 years and 1.2 years respectively for the APOE and ADRC cohorts. The magnitude of change between the pre and post COVID test sessions did not differ on any neuropsychological measure in either cohort. There was, however, a greater increase in informant (but not self) reported cognitive change in the APOE cohort (p = 0.018), but this became nonsignificant after correcting for multiple comparisons. CONCLUSION: Overall members of both cohorts recovered well despite their greater age-related vulnerability to more severe disease.


Asunto(s)
Enfermedad de Alzheimer , COVID-19 , Disfunción Cognitiva , Humanos , Anciano , Pruebas Neuropsicológicas , COVID-19/complicaciones , Cognición , Estudios Longitudinales , Enfermedad de Alzheimer/complicaciones , Enfermedad de Alzheimer/psicología , Apolipoproteínas E/genética , Apolipoproteína E4 , Disfunción Cognitiva/etiología
18.
iScience ; 25(5): 104184, 2022 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-35494220

RESUMEN

The response of vital organs to different types of nutrition or diet is a fundamental question in physiology. We examined the cardiac response to 4 weeks of high-fat diet in mice, measuring cardiac metabolites and mRNA. Metabolomics showed dramatic differences after a high-fat diet, including increases in several acyl-carnitine species. The RNA-seq data showed changes consistent with adaptations to use more fatty acid as substrate and an increase in the antioxidant protein catalase. Changes in mRNA were correlated with changes in protein level for several highly responsive genes. We also found significant sex differences in both metabolomics and RNA-seq datasets, both at baseline and after high fat diet. This work reveals the response of a vital organ to dietary intervention at both metabolomic and transcriptomic levels, which is a fundamental question in physiology. This work also reveals significant sex differences in cardiac metabolites and gene expression.

19.
Sci Rep ; 12(1): 8015, 2022 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-35570215

RESUMEN

To understand fluid induced seismicity, we have designed a large-scale laboratory experiment consisting of a one-cubic-meter sandstone with an artificial fault cut and fluid-injection boreholes. The sandstone block is assembled in a true triaxial loading frame and equipped with 38 piezoelectric sensors to locate and characterise acoustic emission events. The differential stress on the artificial fault is increased in stages to bring it towards a critically stressed state. After each stage of differential stress increase, fluids are injected at low pressures through boreholes to test the potential of fault re-activation. In addition, a high-pressure injection was conducted that created a hydraulic fracture from the injection borehole towards the artificial fault. The newly generated fluid pathway resulted in an activation of the complete block through a stick-slip movement. We compare acoustic emission measurements from the laboratory experiment with seismicity observations from the field-scale CO2 injection at Decatur, Illinois, U.S., and conclude that the existence of fluid pathways plays a decisive role for the potential of induced seismicity.

20.
Diabetes Obes Metab ; 24(7): 1338-1350, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35373893

RESUMEN

AIMS: To evaluate the efficacy and safety of oral semaglutide versus comparators by patient characteristic subgroups in patients with type 2 diabetes. MATERIALS AND METHODS: Change from baseline in glycated haemoglobin (HbA1c) and body weight, and achievement of HbA1c <7.0% with oral semaglutide 7 mg, oral semaglutide 14 mg, flexibly dosed oral semaglutide (flex) and comparators were assessed across baseline subgroups (age, race, ethnicity, diabetes duration, body mass index and HbA1c) from the PIONEER programme. Treatment differences were analysed using a mixed model for repeated measurements for continuous variables and a logistic regression model for the binary endpoint. Pooled safety data were analysed descriptively. RESULTS: Changes from baseline in HbA1c and body weight, and the odds of achieving HbA1c <7.0%, were greater with oral semaglutide 14 mg/flex (n = 1934) and higher or similar with oral semaglutide 7 mg (n = 823) versus comparators (n = 2077) across most subgroups. Changes in HbA1c with oral semaglutide 14 mg/flex were greater for patients with higher baseline HbA1c (HbA1c >9.0%: -1.7% to -2.6%; HbA1c <8.0%: -0.7% to -1.2%). In some trials, Asian patients experienced greater HbA1c reductions with oral semaglutide 14 mg/flex (-1.5% to -1.8%) than other racial groups (-0.6% to -1.6%). The overall incidence of adverse events (AEs) with oral semaglutide was similar to that with comparators and was consistent across subgroups. More gastrointestinal AEs were observed with oral semaglutide, versus comparators, across subgroups. CONCLUSIONS: Oral semaglutide demonstrated consistently greater HbA1c and body weight reductions across a range of patient characteristics, with greater HbA1c reductions seen at higher baseline HbA1c levels.


Asunto(s)
Diabetes Mellitus Tipo 2 , Peso Corporal , Diabetes Mellitus Tipo 2/inducido químicamente , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Péptidos Similares al Glucagón/efectos adversos , Hemoglobina Glucada/análisis , Humanos , Hipoglucemiantes/efectos adversos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...