RESUMEN
Telomere chromatin structure is pivotal for maintaining genome stability by regulating the binding of telomere-associated proteins and inhibiting the DNA damage response. In Saccharomyces cerevisiae, silent information regulator (Sir) proteins bind to terminal repeats and to subtelomeric X-elements, resulting in transcriptional silencing. Herein, we show that sir2 mutant strains display a specific loss of a nucleosome residing in the X-elements and that this deficiency is remarkably consistent between different telomeres. The X-elements contain several binding sites for the transcription factor Reb1 and we found that Sir2 and Reb1 compete for stabilizing/destabilizing this nucleosome, i.e. inactivation of Reb1 in a sir2 background reinstated the lost nucleosome. The telomeric-repeat-containing RNAs (TERRAs) originate from subtelomeric regions and extend into the terminal repeats. Both Sir2 and Reb1 repress TERRAs and in a sir2 reb1 double mutant, TERRA levels increased synergistically, showing that Sir2 and Reb1 act in different pathways for repressing TERRAs. We present evidence that Reb1 restricts TERRAs by terminating transcription. Mapping the 5'-ends of TERRAs from several telomeres revealed that the Sir2-stabilized nucleosome is the first nucleosome downstream from the transcriptional start site for TERRAs. Finally, moving an X-element to a euchromatic locus changed nucleosome occupancy and positioning, demonstrating that X-element nucleosome structure is dependent on the local telomere environment.
Asunto(s)
Nucleosomas , Proteínas de Saccharomyces cerevisiae , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Heterocromatina/metabolismo , Nucleosomas/genética , Nucleosomas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae/genética , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae/metabolismo , Sirtuina 2/genética , Sirtuina 2/metabolismo , Telómero/genética , Telómero/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismoRESUMEN
Resolution of branched DNA structures is pivotal for repair of stalled replication forks and meiotic recombination intermediates. The Yen1 nuclease cleaves both Holliday junctions and replication forks. We show that Yen1 interacts physically with Uls1, a suggested SUMO-targeted ubiquitin ligase that also contains a SWI/SNF-family ATPase-domain. Yen1 is SUMO-modified in its noncatalytic carboxyl terminus and DNA damage induces SUMOylation. SUMO-modification of Yen1 strengthens the interaction to Uls1, and mutations in SUMO interaction motifs in Uls1 weakens the interaction. However, Uls1 does not regulate the steady-state level of SUMO-modified Yen1 or chromatin-associated Yen1. In addition, SUMO-modification of Yen1 does not affect the catalytic activity in vitro. Consistent with a shared function for Uls1 and Yen1, mutations in both genes display similar phenotypes. Both uls1 and yen1 display negative genetic interactions with the alternative HJ-cleaving nuclease Mus81, manifested both in hypersensitivity to DNA damaging agents and in meiotic defects. Point mutations in ULS1 (uls1K975R and uls1C1330S, C1333S) predicted to inactivate the ATPase and ubiquitin ligase activities, respectively, are as defective as the null allele, indicating that both functions of Uls1 are essential. A micrococcal nuclease sequencing experiment showed that Uls1 had minimal effects on global nucleosome positioning/occupancy. Moreover, increased gene dosage of YEN1 partially alleviates the mus81 uls1 sensitivity to DNA damage. We suggest a preliminary model in which Uls1 acts in the same pathway as Yen1 to resolve branched DNA structures.