Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Appl Environ Microbiol ; : e0028224, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38864631

RESUMEN

Clostridium acetobutylicum is a solventogenic, anaerobic, gram-positive bacterium that is commonly considered the model organism for studying acetone-butanol-ethanol fermentation. The need to produce these chemicals sustainably and with a minimal impact on the environment has revived the interest in research on this bacterium. The recent development of efficient genetic tools allows to better understand the physiology of this micro-organism, aiming at improving its fermentation capacities. Knowledge about gene essentiality would guide the future genetic editing strategies and support the understanding of crucial cellular functions in this bacterium. In this work, we applied a transposon insertion site sequencing method to generate large mutant libraries containing millions of independent mutants that allowed us to identify a core group of 418 essential genes needed for in vitro development. Future research on this significant biocatalyst will be guided by the data provided in this work, which will serve as a valuable resource for the community. IMPORTANCE: Clostridium acetobutylicum is a leading candidate to synthesize valuable compounds like three and four carbons alcohols. Its ability to convert carbohydrates into a mixture of acetone, butanol, and ethanol as well as other chemicals of interest upon genetic engineering makes it an advantageous organism for the valorization of lignocellulose-derived sugar mixtures. Since, genetic optimization depends on the fundamental insights supplied by accurate gene function assignment, gene essentiality analysis is of great interest as it can shed light on the function of many genes whose functions are still to be confirmed. The data obtained in this study will be of great value for the research community aiming to develop C. acetobutylicum as a platform organism for the production of chemicals of interest.

2.
Front Cell Infect Microbiol ; 13: 1248782, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37727809

RESUMEN

Background and aims: Hepatitis B virus (HBV) infection affects 300 million individuals worldwide, representing a major factor for the development of hepatic complications. Although existing antivirals are effective in suppressing replication, eradication of HBV is not achieved. Therefore, a multi-faceted approach involving antivirals and immunomodulatory agents is required. Non-human primates are widely used in pre-clinical studies due to their close evolutionary relationship to humans. Nonetheless, it is fundamental to identify the differences in immune response between humans and these models. Thus, we performed a transcriptomic characterization and interspecies comparison of the early immune responses to HBV in human and cynomolgus macaques. Methods: We characterized early transcriptomic changes in human and cynomolgus B cells, T cells, myeloid and plasmacytoid dendritic cells (pDC) exposed to HBV ex vivo for 2 hours. Differentially-expressed genes were further compared to the profiles of HBV-infected patients using publicly-available single-cell data. Results: HBV induced a wide variety of transcriptional changes in all cell types, with common genes between species representing only a small proportion. In particular, interferon gamma signaling was repressed in human pDCs. At the gene level, interferon gamma inducible protein 16 (IFI16) was upregulated in macaque pDCs, while downregulated in humans. Moreover, IFI16 expression in pDCs from chronic HBV-infected patients anti-paralleled serum HBsAg levels. Conclusion: Our characterization of early transcriptomic changes induced by HBV in humans and cynomolgus macaques represents a useful resource for the identification of shared and divergent host responses, as well as potential immune targets against HBV.


Asunto(s)
Hepatitis B , Transcriptoma , Animales , Humanos , Virus de la Hepatitis B/genética , Interferón gamma , Antivirales , Macaca fascicularis , Hepatitis B/genética
3.
ACS Synth Biol ; 11(12): 4077-4088, 2022 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-36427328

RESUMEN

Control of gene expression is fundamental to cell engineering. Here we demonstrate a set of approaches to tune gene expression in Clostridia using the model Clostridium phytofermentans. Initially, we develop a simple benchtop electroporation method that we use to identify a set of replicating plasmids and resistance markers that can be cotransformed into C. phytofermentans. We define a series of promoters spanning a >100-fold expression range by testing a promoter library driving the expression of a luminescent reporter. By insertion of tet operator sites upstream of the reporter, its expression can be quantitatively altered using the Tet repressor and anhydrotetracycline (aTc). We integrate these methods into an aTc-regulated dCas12a system with which we show in vivo CRISPRi-mediated repression of reporter and fermentation genes in C. phytofermentans. Together, these approaches advance genetic transformation and experimental control of gene expression in Clostridia.


Asunto(s)
Clostridiales , Clostridium , Clostridiales/genética , Regiones Promotoras Genéticas/genética , Clostridium/genética , Clostridium/metabolismo , Expresión Génica
4.
PLoS Genet ; 18(4): e1009943, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35377874

RESUMEN

Understanding mechanisms that shape horizontal exchange in prokaryotes is a key problem in biology. A major limit on DNA entry is imposed by restriction-modification (RM) processes that depend on the pattern of DNA modification at host-specified sites. In classical RM, endonucleolytic DNA cleavage follows detection of unprotected sites on entering DNA. Recent investigation has uncovered BREX (BacteRiophage EXclusion) systems. These RM-like activities employ host protection by DNA modification, but immediate replication arrest occurs without evident of nuclease action on unmodified phage DNA. Here we show that the historical stySA RM locus of Salmonella enterica sv Typhimurium is a variant BREX system. A laboratory strain disabled for both the restriction and methylation activity of StySA nevertheless has wild type sequence in pglX, the modification gene homolog. Instead, flanking genes pglZ and brxC each carry multiple mutations (µ) in their C-terminal domains. We further investigate this system in situ, replacing the mutated pglZµ and brxCµ genes with the WT counterpart. PglZ-WT supports methylation in the presence of either BrxCµ or BrxC-WT but not in the presence of a deletion/insertion allele, ΔbrxC::cat. Restriction requires both BrxC-WT and PglZ-WT, implicating the BrxC C-terminus specifically in restriction activity. These results suggests that while BrxC, PglZ and PglX are principal components of the BREX modification activity, BrxL is required for restriction only. Furthermore, we show that a partial disruption of brxL disrupts transcription globally.


Asunto(s)
Bacteriófagos , Bacteriófagos/genética , Bacteriófagos/metabolismo , ADN Viral , Metilación , Salmonella typhimurium/genética , Salmonella typhimurium/metabolismo
5.
Nucleic Acids Res ; 49(19): e113, 2021 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-34417598

RESUMEN

DNA methylation is widespread amongst eukaryotes and prokaryotes to modulate gene expression and confer viral resistance. 5-Methylcytosine (m5C) methylation has been described in genomes of a large fraction of bacterial species as part of restriction-modification systems, each composed of a methyltransferase and cognate restriction enzyme. Methylases are site-specific and target sequences vary across organisms. High-throughput methods, such as bisulfite-sequencing can identify m5C at base resolution but require specialized library preparations and single molecule, real-time (SMRT) sequencing usually misses m5C. Here, we present a new method called RIMS-seq (rapid identification of methylase specificity) to simultaneously sequence bacterial genomes and determine m5C methylase specificities using a simple experimental protocol that closely resembles the DNA-seq protocol for Illumina. Importantly, the resulting sequencing quality is identical to DNA-seq, enabling RIMS-seq to substitute standard sequencing of bacterial genomes. Applied to bacteria and synthetic mixed communities, RIMS-seq reveals new methylase specificities, supporting routine study of m5C methylation while sequencing new genomes.


Asunto(s)
5-Metilcitosina/metabolismo , Metilasas de Modificación del ADN/metabolismo , Enzimas de Restricción del ADN/metabolismo , Escherichia coli K12/genética , Genoma Bacteriano , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Acinetobacter calcoaceticus/enzimología , Acinetobacter calcoaceticus/genética , Aeromonas hydrophila/enzimología , Aeromonas hydrophila/genética , Bacillus amyloliquefaciens/enzimología , Bacillus amyloliquefaciens/genética , Secuencia de Bases , Clostridium acetobutylicum/enzimología , Clostridium acetobutylicum/genética , Metilación de ADN , Metilasas de Modificación del ADN/genética , Enzimas de Restricción del ADN/genética , Escherichia coli K12/enzimología , Regulación Bacteriana de la Expresión Génica , Haemophilus/enzimología , Haemophilus/genética , Haemophilus influenzae/enzimología , Haemophilus influenzae/genética , Humanos , Microbiota/genética , Análisis de Secuencia de ADN , Piel/microbiología
6.
Genome Res ; 31(2): 291-300, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33468551

RESUMEN

The predominant methodology for DNA methylation analysis relies on the chemical deamination by sodium bisulfite of unmodified cytosine to uracil to permit the differential readout of methylated cytosines. Bisulfite treatment damages the DNA, leading to fragmentation and loss of long-range methylation information. To overcome this limitation of bisulfite-treated DNA, we applied a new enzymatic deamination approach, termed enzymatic methyl-seq (EM-seq), to long-range sequencing technologies. Our methodology, named long-read enzymatic modification sequencing (LR-EM-seq), preserves the integrity of DNA, allowing long-range methylation profiling of 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC) over multikilobase length of genomic DNA. When applied to known differentially methylated regions (DMRs), LR-EM-seq achieves phasing of >5 kb, resulting in broader and better defined DMRs compared with that previously reported. This result showed the importance of phasing methylation for biologically relevant questions and the applicability of LR-EM-seq for long-range epigenetic analysis at single-molecule and single-nucleotide resolution.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...