Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Mol Cell Cardiol ; 48(2): 387-94, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19883655

RESUMEN

mAKAPbeta is the scaffold for a multimolecular signaling complex in cardiac myocytes that is required for the induction of neonatal myocyte hypertrophy. We now show that the pro-hypertrophic phosphatase calcineurin binds directly to a single site on mAKAPbeta that does not conform to any of the previously reported consensus binding sites. Calcineurin-mAKAPbeta complex formation is increased in the presence of Ca(2+)/calmodulin and in norepinephrine-stimulated primary cardiac myocytes. This binding is of functional significance because myocytes exhibit diminished norepinephrine-stimulated hypertrophy when expressing a mAKAPbeta mutant incapable of binding calcineurin. In addition to calcineurin, the transcription factor NFATc3 also associates with the mAKAPbeta scaffold in myocytes. Calcineurin bound to mAKAPbeta can dephosphorylate NFATc3 in myocytes, and expression of mAKAPbeta is required for NFAT transcriptional activity. Taken together, our results reveal the importance of regulated calcineurin binding to mAKAPbeta for the induction of cardiac myocyte hypertrophy. Furthermore, these data illustrate how scaffold proteins organizing localized signaling complexes provide the molecular architecture for signal transduction networks regulating key cellular processes.


Asunto(s)
Proteínas de Anclaje a la Quinasa A/metabolismo , Calcineurina/metabolismo , Cardiomegalia/enzimología , Miocitos Cardíacos/enzimología , Miocitos Cardíacos/patología , Proteínas de Anclaje a la Quinasa A/química , Animales , Calcio/metabolismo , Calmodulina/metabolismo , Línea Celular , Activación Enzimática , Humanos , Miocardio/metabolismo , Factores de Transcripción NFATC/metabolismo , Unión Proteica , Estructura Terciaria de Proteína , Transporte de Proteínas , Ratas , Ratas Sprague-Dawley
2.
Proc Natl Acad Sci U S A ; 105(37): 13835-40, 2008 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-18772391

RESUMEN

A-kinase anchoring proteins (AKAPs) influence the spatial and temporal regulation of cAMP signaling events. Anchoring of PKA in proximity to certain adenylyl cyclase (AC) isoforms is thought to enhance the phosphorylation dependent termination of cAMP synthesis. Using a combination of immunoprecipitation and enzymological approaches, we show that the plasma membrane targeted anchoring protein AKAP9/Yotiao displays unique specificity for interaction and the regulation of a variety of AC isoforms. Yotiao inhibits AC 2 and 3, but has no effect on AC 1 or 9, serving purely as a scaffold for these latter isoforms. Thus, Yotiao represents an inhibitor of AC2. The N terminus of AC2 (AC2-NT), which binds directly to amino acids 808-957 of Yotiao, mediates this interaction. Additionally, AC2-NT and Yotiao (808-957) are able to effectively inhibit the association of AC2 with Yotiao and, thus, reverse the inhibition of AC2 by Yotiao in membranes. Finally, disruption of Yotiao-AC interactions gives rise to a 40% increase in brain AC activity, indicating that this anchoring protein functions to directly regulate cAMP production in the brain.


Asunto(s)
Proteínas de Anclaje a la Quinasa A/metabolismo , Adenilil Ciclasas/metabolismo , Encéfalo/enzimología , Proteínas del Citoesqueleto/metabolismo , Proteínas de Anclaje a la Quinasa A/antagonistas & inhibidores , Proteínas de Anclaje a la Quinasa A/genética , Inhibidores de Adenilato Ciclasa , Animales , Sitios de Unión , Encéfalo/efectos de los fármacos , Línea Celular , Membrana Celular/enzimología , Proteínas del Citoesqueleto/antagonistas & inhibidores , Proteínas del Citoesqueleto/genética , Inhibidores Enzimáticos/farmacología , Humanos , Isoenzimas/metabolismo , Unión Proteica , Ratas
3.
IUBMB Life ; 59(3): 163-9, 2007 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-17487687

RESUMEN

Cardiac hypertrophy is regulated by a large intracellular signal transduction network. Each of the many signaling pathways in this network contributes uniquely to the control of cell growth. In the last few years, it has become apparent that multimolecular signaling complexes or 'signalosomes' are important for mediating crosstalk between different signaling pathways. These complexes integrate upstream signals and control downstream effectors. In the cardiac myocyte, the protein mAKAPbeta serves as a scaffold for a large signalosome that is responsive to upstream cAMP, Ca(2+), and mitogen-activated protein kinase signaling. The mAKAPbeta signalosome is important for the control of NFATc transcription factor activity and for the overall induction of myocyte hypertrophy.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Cardiomegalia/metabolismo , Miocitos Cardíacos , Transducción de Señal/fisiología , Proteínas de Anclaje a la Quinasa A , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Calcineurina/metabolismo , Cardiomegalia/patología , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Retroalimentación Fisiológica , Humanos , Modelos Biológicos , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/metabolismo
4.
Mol Cell ; 23(6): 925-31, 2006 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-16973443

RESUMEN

Spatiotemporal organization of cAMP signaling begins with the tight control of second messenger synthesis. In response to agonist stimulation of G protein-coupled receptors, membrane-associated adenylyl cyclases (ACs) generate cAMP that diffuses throughout the cell. The availability of cAMP activates various intracellular effectors, including protein kinase A (PKA). Specificity in PKA action is achieved by the localization of the enzyme near its substrates through association with A-kinase anchoring proteins (AKAPs). Here, we provide evidence for interactions between AKAP79/150 and ACV and ACVI. PKA anchoring facilitates the preferential phosphorylation of AC to inhibit cAMP synthesis. Real-time cellular imaging experiments show that PKA anchoring with the cAMP synthesis machinery ensures rapid termination of cAMP signaling upon activation of the kinase. This protein configuration permits the formation of a negative feedback loop that temporally regulates cAMP production.


Asunto(s)
Adenilil Ciclasas/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , AMP Cíclico/biosíntesis , Isoenzimas/metabolismo , Proteínas de Anclaje a la Quinasa A , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/fisiología , Células Cultivadas , Proteínas Quinasas Dependientes de AMP Cíclico/fisiología , Activación Enzimática , Retroalimentación Fisiológica , Humanos , Modelos Biológicos , Fosforilación , Transducción de Señal/fisiología
5.
J Cell Sci ; 118(Pt 23): 5637-46, 2005 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-16306226

RESUMEN

Maladaptive cardiac hypertrophy can progress to congestive heart failure, a leading cause of morbidity and mortality in the United States. A better understanding of the intracellular signal transduction network that controls myocyte cell growth may suggest new therapeutic directions. mAKAP is a scaffold protein that has recently been shown to coordinate signal transduction enzymes important for cytokine-induced cardiac hypertrophy. We now extend this observation and show mAKAP is important for adrenergic-mediated hypertrophy. One function of the mAKAP complex is to facilitate cAMP-dependent protein kinase A-catalyzed phosphorylation of the ryanodine receptor Ca2+-release channel. Experiments utilizing inhibition of the ryanodine receptor, RNA interference of mAKAP expression and replacement of endogenous mAKAP with a mutant form that does not bind to protein kinase A demonstrate that the mAKAP complex contributes to pro-hypertrophic signaling. Further, we show that calcineurin Abeta associates with mAKAP and that the formation of the mAKAP complex is required for the full activation of the pro-hypertrophic transcription factor NFATc. These data reveal a novel function of the mAKAP complex involving the integration of cAMP and Ca2+ signals that promote myocyte hypertrophy.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Cardiomegalia/metabolismo , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Receptores Adrenérgicos/metabolismo , Transducción de Señal/fisiología , Proteínas de Anclaje a la Quinasa A , Proteínas Adaptadoras Transductoras de Señales/efectos de los fármacos , Agonistas Adrenérgicos beta/farmacología , Animales , Calcineurina/metabolismo , Cardiomegalia/patología , Células Cultivadas , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Factores de Transcripción NFATC/metabolismo , Interferencia de ARN/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Receptores Adrenérgicos/efectos de los fármacos , Canal Liberador de Calcio Receptor de Rianodina/efectos de los fármacos , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Transducción de Señal/efectos de los fármacos
6.
Neuropharmacology ; 46(3): 299-310, 2004 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-14975685

RESUMEN

Significant progress has been made toward understanding the mechanisms by which organisms learn from experiences and how those experiences are translated into memories. Advances in molecular, electrophysiological and genetic technologies have permitted great strides in identifying biochemical and structural changes that occur at synapses during processes that are thought to underlie learning and memory. Cellular events that generate the second messenger cyclic AMP (cAMP) and activate protein kinase A (PKA) have been linked to synaptic plasticity and long-term memory. In this review we will focus on the role of PKA in synaptic plasticity and discuss how the compartmentalization of PKA through its association with A-Kinase Anchoring Proteins (AKAPs) affect PKA function in this process.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Proteínas Portadoras/fisiología , Proteínas Quinasas Dependientes de AMP Cíclico/fisiología , Plasticidad Neuronal/fisiología , Transducción de Señal/fisiología , Sinapsis/enzimología , Animales , Proteínas Portadoras/química , Proteínas Quinasas Dependientes de AMP Cíclico/química , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA