Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2023 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-36865233

RESUMEN

BACKGROUND: Diabetes augments activity of histone deacetylase 6 (HDAC6) and generation of tumor necrosis factor α (TNFα) and impairs the physiological function of mitochondrial complex I (mCI) which oxidizes reduced nicotinamide adenine dinucleotide (NADH) to nicotinamide adenine dinucleotide to sustain the tricarboxylic acid cycle and ß-oxidation. Here we examined how HDAC6 regulates TNFα production, mCI activity, mitochondrial morphology and NADH levels, and cardiac function in ischemic/reperfused diabetic hearts. METHODS: HDAC6 knockout, streptozotocin-induced type 1 diabetic, and obese type 2 diabetic db/db mice underwent myocardial ischemia/reperfusion injury in vivo or ex vivo in a Langendorff-perfused system. H9c2 cardiomyocytes with and without HDAC6 knockdown were subjected to hypoxia/reoxygenation injury in the presence of high glucose. We compared the activities of HDAC6 and mCI, TNFα and mitochondrial NADH levels, mitochondrial morphology, myocardial infarct size, and cardiac function between groups. RESULTS: Myocardial ischemia/reperfusion injury and diabetes synergistically augmented myocardial HDCA6 activity, myocardial TNFα levels, and mitochondrial fission and inhibited mCI activity. Interestingly, neutralization of TNFα with an anti-TNFα monoclonal antibody augmented myocardial mCI activity. Importantly, genetic disruption or inhibition of HDAC6 with tubastatin A decreased TNFα levels, mitochondrial fission, and myocardial mitochondrial NADH levels in ischemic/reperfused diabetic mice, concomitant with augmented mCI activity, decreased infarct size, and ameliorated cardiac dysfunction. In H9c2 cardiomyocytes cultured in high glucose, hypoxia/reoxygenation augmented HDAC6 activity and TNFα levels and decreased mCI activity. These negative effects were blocked by HDAC6 knockdown. CONCLUSIONS: Augmenting HDAC6 activity inhibits mCI activity by increasing TNFα levels in ischemic/reperfused diabetic hearts. The HDAC6 inhibitor, tubastatin A, has high therapeutic potential for acute myocardial infarction in diabetes.

2.
Cardiovasc Res ; 115(1): 168-178, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-29931049

RESUMEN

Aims: Previous studies indicate that nitric oxide derived from endothelial nitric oxide synthase (eNOS) serves as both trigger and mediator in anaesthetic cardiac preconditioning. The mechanisms underlying regulation of eNOS by volatile anaesthetics have not been fully understood. Therefore, this study examined the role of vascular endothelial growth factor (VEGF) in isoflurane cardiac preconditioning. Methods and results: Wistar rats underwent 30 min of coronary artery occlusion followed by 2 h of reperfusion. Isoflurane given prior to ischaemia/reperfusion significantly decreased myocardial infarct size from 60 ± 1% in control to 40 ± 3% (n = 8 rats/group, P < 0.05). The beneficial effects of isoflurane were blocked by neutralizing antibody against VEGF (nVEGF). Coronary arterial endothelial cells (ECs) alone or together with cardiomyocytes (CMs) were subjected to hypoxia/reoxygenation injury. The expression of VEGF and eNOS was analysed by western blot, and nitric oxide was measured by ozone-based chemiluminescence. In co-cultured CMs and ECs, isoflurane administered before hypoxia/reoxygenation attenuated lactate dehydrogenase activity and increased the ratio of phosphorylated eNOS/eNOS and nitric oxide production. The protective effect of isoflurane on CMs was compromised by nVEGF and after VEGF in ECs was inhibited with hypoxia inducible factor-1α short hairpin RNA (shRNA). The negative effect of hypoxia inducible factor-1α shRNA was restored by recombinant VEGF. Conclusion: Isoflurane cardiac preconditioning is associated with VEGF regulation of phosphorylation of eNOS and nitric oxide production.


Asunto(s)
Células Endoteliales/enzimología , Precondicionamiento Isquémico Miocárdico/métodos , Isoflurano/farmacología , Daño por Reperfusión Miocárdica/prevención & control , Miocitos Cardíacos/metabolismo , Óxido Nítrico Sintasa de Tipo III/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Animales , Comunicación Celular , Células Cultivadas , Técnicas de Cocultivo , Modelos Animales de Enfermedad , Células Endoteliales/patología , Femenino , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Masculino , Daño por Reperfusión Miocárdica/enzimología , Daño por Reperfusión Miocárdica/patología , Daño por Reperfusión Miocárdica/fisiopatología , Miocitos Cardíacos/patología , Fosforilación , Ratas Wistar , Transducción de Señal
3.
Sci Rep ; 7(1): 3093, 2017 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-28596578

RESUMEN

GTP cyclohydrolase 1 (GCH1) and its product tetrahydrobiopterin play crucial roles in cardiovascular health and disease, yet the exact regulation and role of GCH1 in adverse cardiac remodeling after myocardial infarction are still enigmatic. Here we report that cardiac GCH1 is degraded in remodeled hearts after myocardial infarction, concomitant with increases in the thickness of interventricular septum, interstitial fibrosis, and phosphorylated p38 mitogen-activated protein kinase and decreases in left ventricular anterior wall thickness, cardiac contractility, tetrahydrobiopterin, the dimers of nitric oxide synthase, sarcoplasmic reticulum Ca2+ release, and the expression of sarcoplasmic reticulum Ca2+ handling proteins. Intriguingly, transgenic overexpression of GCH1 in cardiomyocytes reduces the thickness of interventricular septum and interstitial fibrosis and increases anterior wall thickness and cardiac contractility after infarction. Moreover, we show that GCH1 overexpression decreases phosphorylated p38 mitogen-activated protein kinase and elevates tetrahydrobiopterin levels, the dimerization and phosphorylation of neuronal nitric oxide synthase, sarcoplasmic reticulum Ca2+ release, and sarcoplasmic reticulum Ca2+ handling proteins in post-infarction remodeled hearts. Our results indicate that the pivotal role of GCH1 overexpression in post-infarction cardiac remodeling is attributable to preservation of neuronal nitric oxide synthase and sarcoplasmic reticulum Ca2+ handling proteins, and identify a new therapeutic target for cardiac remodeling after infarction.


Asunto(s)
GTP Ciclohidrolasa/genética , Expresión Génica , Infarto del Miocardio/genética , Infarto del Miocardio/patología , Miocitos Cardíacos/metabolismo , Transgenes , Remodelación Ventricular/genética , Animales , Calcio/metabolismo , Fibrosis , GTP Ciclohidrolasa/metabolismo , Pruebas de Función Cardíaca , Ratones , Infarto del Miocardio/metabolismo , Infarto del Miocardio/fisiopatología , Óxido Nítrico Sintasa de Tipo I/metabolismo , Especificidad de Órganos , Fosforilación , Retículo Sarcoplasmático/metabolismo
4.
Sci Rep ; 6: 27925, 2016 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-27295516

RESUMEN

Diabetic cardiomyopathy increases the risk of heart failure and death. At present, there are no effective approaches to preventing its development in the clinic. Here we report that reduction of cardiac GTP cyclohydrolase 1 (GCH1) degradation by genetic and pharmacological approaches protects the heart against diabetic cardiomyopathy. Diabetic cardiomyopathy was induced in C57BL/6 wild-type mice and transgenic mice with cardiomyocyte-specific overexpression of GCH1 with streptozotocin, and control animals were given citrate buffer. We found that diabetes-induced degradation of cardiac GCH1 proteins contributed to adverse cardiac remodeling and dysfunction in C57BL/6 mice, concomitant with decreases in tetrahydrobiopterin, dimeric and phosphorylated neuronal nitric oxide synthase, sarcoplasmic reticulum Ca(2+) handling proteins, intracellular [Ca(2+)]i, and sarcoplasmic reticulum Ca(2+) content and increases in phosphorylated p-38 mitogen-activated protein kinase and superoxide production. Interestingly, GCH-1 overexpression abrogated these detrimental effects of diabetes. Furthermore, we found that MG 132, an inhibitor for 26S proteasome, preserved cardiac GCH1 proteins and ameliorated cardiac remodeling and dysfunction during diabetes. This study deepens our understanding of impaired cardiac function in diabetes, identifies GCH1 as a modulator of cardiac remodeling and function, and reveals a new therapeutic target for diabetic cardiomyopathy.


Asunto(s)
Cardiomiopatías Diabéticas/patología , GTP Ciclohidrolasa/metabolismo , Miocardio/enzimología , Miocitos Cardíacos/enzimología , Animales , Presión Sanguínea/efectos de los fármacos , Señalización del Calcio , Diabetes Mellitus Experimental/inducido químicamente , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/patología , Cardiomiopatías Diabéticas/enzimología , Cardiomiopatías Diabéticas/etiología , Modelos Animales de Enfermedad , GTP Ciclohidrolasa/genética , Hemodinámica/efectos de los fármacos , Hipoxantinas/farmacología , Leupeptinas/administración & dosificación , Leupeptinas/farmacología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Óxido Nítrico Sintasa de Tipo I/química , Óxido Nítrico Sintasa de Tipo I/metabolismo , Óxido Nítrico Sintasa de Tipo III/química , Óxido Nítrico Sintasa de Tipo III/metabolismo , Estreptozocina/toxicidad , Remodelación Ventricular/efectos de los fármacos , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
5.
Circ Heart Fail ; 9(1): e002424, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26763290

RESUMEN

BACKGROUND: Diabetic heart disease is associated with tetrahydrobiopterin oxidation and high arginase activity, leading to endothelial nitric oxide synthase dysfunction. Sepiapterin (SEP) is a tetrahydrobiopterin precursor, and L-citrulline (L-Cit) is converted to endothelial nitric oxide synthase substrate, L-arginine. Whether SEP and L-Cit are effective at reducing diabetic heart disease is not known. The present study examined the effects of SEP and L-Cit on diabetic cardiomyopathy and ischemia/reperfusion injury in obese type 2 diabetic mice. METHODS AND RESULTS: Db/db and C57BLKS/J mice at 6 to 8 weeks of age received vehicle, SEP, or L-Cit orally alone or in combination for 8 weeks. Cardiac function was evaluated with echocardiography. Db/db mice displayed hyperglycemia, obesity, and normal blood pressure and cardiac function compared with C57BLKS/J mice at 6 to 8 weeks of age. After vehicle treatment for 8 weeks, db/db mice had reduced ejection fraction, mitral E/A ratio, endothelium-dependent relaxation of coronary arteries, tetrahydrobiopterin concentrations, ratio of endothelial nitric oxide synthase dimers/monomers, and nitric oxide levels compared with vehicle-treated C57BLKS/J mice. These detrimental effects of diabetes mellitus were abrogated by co-administration of SEP and L-Cit. Myocardial infarct size was increased, and coronary flow rate and ± dP/dt were decreased during reperfusion in vehicle-treated db/db mice subjected to ischemia/reperfusion injury compared with control mice. Co-administration of SEP and L-Cit decreased infarct size and improved coronary flow rate and cardiac function in both C57BLKS/J and db/db mice. CONCLUSIONS: Co-administration of SEP and L-Cit limits diabetic cardiomyopathy and ischemia/reperfusion injury in db/db mice through a tetrahydrobiopterin/endothelial nitric oxide synthase/nitric oxide pathway.


Asunto(s)
Cardiotónicos/administración & dosificación , Citrulina/administración & dosificación , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Cardiomiopatías Diabéticas/prevención & control , Infarto del Miocardio/prevención & control , Daño por Reperfusión Miocárdica/prevención & control , Obesidad/complicaciones , Pterinas/administración & dosificación , Factores de Edad , Animales , Biopterinas/análogos & derivados , Biopterinas/metabolismo , Células Cultivadas , Circulación Coronaria/efectos de los fármacos , Vasos Coronarios/efectos de los fármacos , Vasos Coronarios/metabolismo , Vasos Coronarios/fisiopatología , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/metabolismo , Cardiomiopatías Diabéticas/etiología , Cardiomiopatías Diabéticas/metabolismo , Cardiomiopatías Diabéticas/patología , Cardiomiopatías Diabéticas/fisiopatología , Modelos Animales de Enfermedad , Esquema de Medicación , Quimioterapia Combinada , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Preparación de Corazón Aislado , Ratones Endogámicos C57BL , Ratones Obesos , Infarto del Miocardio/etiología , Infarto del Miocardio/metabolismo , Infarto del Miocardio/patología , Infarto del Miocardio/fisiopatología , Daño por Reperfusión Miocárdica/etiología , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/patología , Daño por Reperfusión Miocárdica/fisiopatología , Miocardio/metabolismo , Miocardio/patología , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo III/metabolismo , Fosforilación , Multimerización de Proteína , Factores de Tiempo , Vasodilatación/efectos de los fármacos , Función Ventricular Izquierda/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...