Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Agric Food Chem ; 70(27): 8300-8308, 2022 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-35775364

RESUMEN

Although domesticated potatoes contain a large variety of steroidal glycoalkaloids (SGAs) and saponins, in the past, many research projects mainly focused on the two major SGAs, α-solanine and α-chaconine. This study investigates the quantitative changes, induced by post-harvest LED light exposure, of six SGAs and four saponins in 12 potato cultivars at three different time points (1, 7, and 16 days), by using ultra-performance liquid chromatography tandem mass spectrometry. Altogether, SGA contents of 3.0-17.1 mg/100 g fresh weight (FW) could be observed in the analyzed tubers with potato varieties highly exceeding the newly discussed safety limit of 10 mg/100 g. The overall contents of 0.1-5.4 mg/100 g FW of the so far barely studied saponins, like protoneodioscin or barogenin-solatrioside, highly differed between the assayed potato cultivars. Furthermore, cultivar-specific regulations of SGAs and saponins could be observed due to light exposure.


Asunto(s)
Saponinas , Solanina , Solanum tuberosum , Tubérculos de la Planta/química , Saponinas/análisis , Solanum tuberosum/química
3.
J Agric Food Chem ; 70(24): 7447-7459, 2022 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-35679324

RESUMEN

Plant pathogens such as Phytophthora infestans that caused the Irish Potato Famine continue to threaten local and global food security. Genetic and chemical plant protection measures are often overcome by adaptation of pathogen population structures. Therefore, there is a constant demand for new, consumer- and environment-friendly plant protection strategies. Metabolic alterations induced by P. infestans in the foliage and tubers of six different potato cultivars were investigated. Using a combination of untargeted metabolomics, isolation techniques, and structure elucidation by MS and 1D/2D-NMR experiments, five steroidal glycoalkaloids, five oxylipins, and four steroidal saponins were identified. As the steroidal saponins showed antioomycete but no hemolytic activity, they may thus be considered as probably safe target substances for enrichment in breeding programs for disease resistance and as chemical lead structures for the production of nature-derived synthetic antioomycetes.


Asunto(s)
Phytophthora infestans , Saponinas , Solanum tuberosum , Genotipo , Fitomejoramiento , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/prevención & control , Saponinas/farmacología , Solanum tuberosum/genética
4.
Food Chem ; 365: 130461, 2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-34229992

RESUMEN

α-Solanine and α-chaconine are the major glycoalkaloids (SGAs) in potatoes, but up to now the biosynthesis of these saponins is not fully understood. In planta13CO2 labeling experiments monitored by nuclear magnetic resonance spectroscopy (NMR) and high-resolution mass spectrometry (HRMS) unraveled the SGA biosynthetic pathways from CO2 photosynthates via early precursors to the SGAs. After a pulse of ~ 700 ppm 13CO2 for four hours, followed by a chase period for seven days, specific 13C-distributions were detected in SGAs from the leaves of the labeled plant. NMR analysis determined the positional 13C-enrichments in α-solanine and α-chaconine characterized by 13C2-pairs in their aglycones. These patterns were in perfect agreement with a mevalonate-dependent biosynthesis of the isopentenyl diphosphate and dimethylallyl diphosphate precursors. The 13C-distributions also suggested cyclization of the 2,3-oxidosqualene precursor into the solanidine aglycone backbone involving a non-stereoselective hydroxylation step of the sterol a mixture of 25S-/25R-epimers of the SGAs.


Asunto(s)
Solanina , Solanum tuberosum , Vías Biosintéticas , Dióxido de Carbono , Hojas de la Planta
5.
Front Plant Sci ; 12: 579820, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33868322

RESUMEN

Willow bark is traditionally used for pharmaceutical purposes. Evaluation is so far based on the salicylate content, however, health promoting effects of extracts might be attributed to the interaction of those salicylates with other compounds, which support and complement their action. So far, only S. purpurea, S. daphnoides, and S. fragilis are included in pharmaceutical extracts. Crossing with other species could result in a more diverse secondary metabolite profile with higher pharmacological value. With the help of targeted inter- and intraspecific crossing, new chemotypes were generated, whereby nine different Salix genotypes (S. alba, S. daphnoides, S. humboldtiana, S. lasiandra, S. nigra, S. pentandra, S. purpurea, S. x rubens, S. viminalis) were included in the study. Based on substances known for their health promoting potential and characteristic for Salix (selected phenolic compounds including salicylates), a targeted metabolomics analysis and clustering of 92 generated Salix clones was performed revealing four different cluster/chemoprofiles. In more specific, one group is formed by S. daphnoides clones and inter- and intraspecific hybrids, a second group by S. viminalis clones and inter- and intraspecific hybrids, a third group generally formed by S. alba, S. pentandra, S. x rubens, and S. lasiandra clones and hybrids, and a fourth group by S. purpurea clones and inter- and intraspecific hybrids. Clustering on the basis of the selected phenolic compounds can be used for identifying Salix clones with a different compound profile. New combinations of secondary plant metabolites offer the chance to identify Salix crosses with improved effects on human health.

6.
J Agric Food Chem ; 68(41): 11524-11534, 2020 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-32930579

RESUMEN

Applying the sensomics approach, a combination of activity-guided fractionation and taste dilution analysis (TDA) followed by high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS), ultrahigh-performance liquid chromatography time-of-flight mass spectrometry (UHPLC-TOF-MS), and one-dimensional and two-dimensional nuclear magnetic resonance spectroscopy (1D/2D NMR) allowed the elucidation of key off-taste compounds in potato dietary fiber isolates. Previously already having been described as off-taste compounds in potato tubers, saponins α-chaconine and α-solanine were shown to be also major contributors to overall off-taste in potato fiber isolates. Moreover, fatty acids as well as fatty acid oxidation products, namely, E-9,10,13-trihydroxy-octadec-11-enoic acid as well as newly identified compounds hexadecyl(E/Z)-ferulate and octadecyl(E/Z)-ferulate, were shown to be key inducers to off-taste in the isolates, exhibiting taste recognition thresholds between 18 and 981 µmol/L. This paper demonstrates the isolation, structure determination, quantitation as well as sensory attributes of these key off-taste compounds.


Asunto(s)
Astringentes/química , Aromatizantes/química , Preparaciones de Plantas/química , Tubérculos de la Planta/química , Solanum tuberosum/química , Cromatografía Líquida de Alta Presión , Fibras de la Dieta/análisis , Humanos , Espectrometría de Masas en Tándem , Gusto
7.
Biochim Biophys Acta Bioenerg ; 1861(10): 148251, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32598881

RESUMEN

Saponins are a diverse group of secondary plant metabolites, some of which display hemolytic toxicity due to plasma membrane permeabilization. This feature is employed in biological applications for transferring hydrophilic molecules through cell membranes. Widely used commercial saponins include digitonin and saponins from soap tree bark, both of which constitute complex mixtures of little definition. We assessed the permeabilization power of pure saponins towards cellular membranes in an effort to detect novel properties and to improve existing applications. In a respirometric assay, we characterized half-maximal permeabilization of the plasma membrane for different metabolites, of the mitochondrial outer membrane for cytochrome C and the full solubilization of mitochondrial inner membrane protein complexes. Beyond the complete list as repository for the field, we highlight several findings with direct applicability. First, we identified and validated α-chaconine as alternative permeabilization agent in respirometric assays of cultured cells and isolated synaptosomes, superior to digitonin in its tolerability for mitochondria. Second, we identified glycyrrhizic acid to form exceptionally small pores impermeable for adenosine diphosphate. Third, in a concentration dependent manner, tomatine proved to be able to selectively permeabilize the mitochondrial outer, but not inner membrane, allowing for novel states in which to determine cytochrome C oxidase activity. In summary, we provide a list of the permeabilization properties of 18 pure saponins. The identification of two saponins, namely tomatine and chaconine, with direct usability in improved or novel cell biological applications within this small subgroup demonstrates the tremendous potential for further functional screening of pure saponins.


Asunto(s)
Metabolismo/efectos de los fármacos , Saponinas/farmacología , Animales , Calorimetría , Permeabilidad de la Membrana Celular/efectos de los fármacos , Complejo IV de Transporte de Electrones/metabolismo , Células HEK293 , Humanos , Ratones
8.
ACS Nano ; 12(2): 1618-1629, 2018 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-29301081

RESUMEN

Plasmon hybridization, the electromagnetic analog of molecular orbital theory, provides a simple and intuitive method to describe the plasmonic response of complex nanostructures from the combination of the responses of their individual constituents. Here, we follow this approach to investigate the optical properties of periodic arrays of plasmonic nanoparticles with multiparticle unit cells. These systems support strong collective lattice resonances, arising from the coherent multiple scattering enabled by the lattice periodicity. Due to the extended nature of these modes, the interaction between them is very different from that among localized surface plasmons supported by individual nanoparticles. This leads to a much richer hybridization scenario, which we exploit here to design periodic arrays with engineered properties. These include arrays with two-particle unit cells, in which the interaction between the individual lattice resonances can be canceled or maximized by controlling the relative position of the particles within the unit cell, as well as arrays whose response can be made either invariant to the polarization of the incident light or strongly dependent on it. Moreover, we explore systems with three- and four-particle unit cells and show that they can be designed to support lattice resonances with complex hybridization patterns in which different groups of particles in the unit cell can be selectively excited. The results of this work serve to advance our understanding of periodic arrays of nanostructures and provide a methodology to design periodic structures with engineered properties for applications in nanophotonics.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...