RESUMEN
The neuronal Na+ -activated K+ channel Slack (aka Slo2.2, KNa 1.1, or Kcnt1) has been implicated in setting and maintaining the resting membrane potential and defining excitability and firing patterns, as well as in the generation of the slow afterhyperpolarization following bursts of action potentials. Slack activity increases significantly under conditions of high intracellular Na+ levels, suggesting this channel may exert important pathophysiological functions. To address these putative roles, we studied whether Slack K+ channels contribute to pathological changes and excitotoxic cell death caused by glutamatergic overstimulation of Ca2+ - and Na+ -permeable N-methyl-D-aspartic acid receptors (NMDAR). Slack-deficient (Slack KO) and wild-type (WT) mice were subjected to intrastriatal microinjections of the NMDAR agonist NMDA. NMDA-induced brain lesions were significantly increased in Slack KO vs WT mice, suggesting that the lack of Slack renders neurons particularly susceptible to excitotoxicity. Accordingly, excessive neuronal cell death was seen in Slack-deficient primary cerebellar granule cell (CGC) cultures exposed to glutamate and NMDA. Differences in neuronal survival between WT and Slack KO CGCs were largely abolished by the NMDAR antagonist MK-801, but not by NBQX, a potent and highly selective competitive antagonist of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-type ionotropic glutamate receptors. Interestingly, NMDAR-evoked Ca2+ signals did not differ with regard to Slack genotype in CGCs. However, real-time monitoring of K+ following NMDAR activation revealed a significant contribution of this channel to the intracellular drop in K+ . Finally, TrkB and TrkC neurotrophin receptor transcript levels were elevated in NMDA-exposed Slack-proficient CGCs, suggesting a mechanism by which this K+ channel contributes to the activation of the extracellular-signal-regulated kinase (Erk) pathway and thereby to neuroprotection. Combined, our findings suggest that Slack-dependent K+ signals oppose the NMDAR-mediated excitotoxic neuronal injury by promoting pro-survival signaling via the BDNF/TrkB and Erk axis.
Asunto(s)
Potenciales de Acción , Encefalopatías/prevención & control , Muerte Celular , N-Metilaspartato/toxicidad , Proteínas del Tejido Nervioso/fisiología , Neuronas/citología , Canales de potasio activados por Sodio/fisiología , Animales , Encefalopatías/inducido químicamente , Encefalopatías/metabolismo , Encefalopatías/patología , Células Cultivadas , Agonistas de Aminoácidos Excitadores/toxicidad , Ácido Glutámico/metabolismo , Masculino , Potenciales de la Membrana , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neuronas/metabolismo , Neuronas/patología , Transducción de SeñalRESUMEN
Mutations in CNGA3 and CNGB3, the genes encoding the subunits of the tetrameric cone photoreceptor cyclic nucleotide-gated ion channel, cause achromatopsia, a congenital retinal disorder characterized by loss of cone function. However, a small number of patients carrying the CNGB3/c.1208G>A;p.R403Q mutation present with a variable retinal phenotype ranging from complete and incomplete achromatopsia to moderate cone dysfunction or progressive cone dystrophy. By exploring a large patient cohort and published cases, we identified 16 unrelated individuals who were homozygous or (compound-)heterozygous for the CNGB3/c.1208G>A;p.R403Q mutation. In-depth genetic and clinical analysis revealed a co-occurrence of a mutant CNGA3 allele in a high proportion of these patients (10 of 16), likely contributing to the disease phenotype. To verify these findings, we generated a Cngb3R403Q/R403Q mouse model, which was crossbred with Cnga3-deficient (Cnga3-/-) mice to obtain triallelic Cnga3+/- Cngb3R403Q/R403Q mutants. As in human subjects, there was a striking genotype-phenotype correlation, since the presence of 1 Cnga3-null allele exacerbated the cone dystrophy phenotype in Cngb3R403Q/R403Q mice. These findings strongly suggest a digenic and triallelic inheritance pattern in a subset of patients with achromatopsia/severe cone dystrophy linked to the CNGB3/p.R403Q mutation, with important implications for diagnosis, prognosis, and genetic counseling.
Asunto(s)
Defectos de la Visión Cromática , Canales Catiónicos Regulados por Nucleótidos Cíclicos , Heterocigoto , Activación del Canal Iónico , Mutación Missense , Células Fotorreceptoras Retinianas Conos , Enfermedades de la Retina , Sustitución de Aminoácidos , Animales , Defectos de la Visión Cromática/genética , Defectos de la Visión Cromática/metabolismo , Defectos de la Visión Cromática/patología , Canales Catiónicos Regulados por Nucleótidos Cíclicos/genética , Canales Catiónicos Regulados por Nucleótidos Cíclicos/metabolismo , Modelos Animales de Enfermedad , Células HEK293 , Humanos , Ratones , Ratones Transgénicos , Mutación , Células Fotorreceptoras Retinianas Conos/metabolismo , Células Fotorreceptoras Retinianas Conos/patología , Enfermedades de la Retina/genética , Enfermedades de la Retina/metabolismo , Enfermedades de la Retina/patologíaRESUMEN
Activity-dependent BDNF (brain-derived neurotrophic factor) expression is hypothesized to be a cue for the context-specificity of memory formation. So far, activity-dependent BDNF cannot be explicitly monitored independently of basal BDNF levels. We used the BLEV ( B DNF- live-exon- visualization) reporter mouse to specifically detect activity-dependent usage of Bdnf exon-IV and -VI promoters through bi-cistronic co-expression of CFP and YFP, respectively. Enriching acoustic stimuli led to improved peripheral and central auditory brainstem responses, increased Schaffer collateral LTP, and enhanced performance in the Morris water maze. Within the brainstem, neuronal activity was increased and accompanied by a trend for higher expression levels of Bdnf exon-IV-CFP and exon-VI-YFP transcripts. In the hippocampus BDNF transcripts were clearly increased parallel to changes in parvalbumin expression and were localized to specific neurons and capillaries. Severe acoustic trauma, in contrast, elevated neither Bdnf transcript levels, nor auditory responses, parvalbumin or LTP. Together, this suggests that critical sensory input is essential for recruitment of activity-dependent auditory-specific BDNF expression that may shape network adaptation.
RESUMEN
The sodium-activated potassium channel Slack (Slo2.2) is widely expressed in central and peripheral neurons where it is supposed to shape firing properties important for neuronal excitability. Slack activity is enhanced by interaction with the Fragile-X-Mental-Retardation-Protein (FMRP) and loss of FMRP leads to decreased sodium-activated potassium currents in medial nucleus of the trapezoid body neurons of the Fmr1-knockout (KO) mouse representing a mouse model of the human Fragile-X-Syndrome (FXS) and autism. Autism is a frequent comorbidity of FXS, but it is unclear whether Slack is involved in autistic or related conditions of FXS in vivo. By applying a wide range of behavioral tests, we compared social and autism-related behaviors in Slack- and FMRP-deficient mice. In our hands, as expected, FMRP-deficiency causes autism-related behavioral changes in nesting and in a marble-burying test. In contrast, Slack-deficient males exhibited specific abnormalities in sociability in direct and indirect social interaction tests. Hence, we show for the first time that a proper Slack channel function is mandatory for normal social behavior in mice. Nevertheless, as deficits in social behaviors seem to occur independently from each other in FMRP and Slack null mutants, we conclude that Slack is not involved in the autistic phenotype of FMRP KO mice.
Asunto(s)
Conducta Animal/fisiología , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Actividad Motora/fisiología , Proteínas del Tejido Nervioso/metabolismo , Canales de Potasio/metabolismo , Conducta Social , Animales , Trastorno del Espectro Autista/genética , Trastorno del Espectro Autista/metabolismo , Peso Corporal/fisiología , Ritmo Circadiano/fisiología , Modelos Animales de Enfermedad , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Masculino , Ratones , Ratones Noqueados , Proteínas del Tejido Nervioso/genética , Canales de Potasio/genética , Canales de potasio activados por SodioRESUMEN
Abstract: The sodium-activated potassium channel Slack (Kcnt1, Slo2.2) is highly expressed in dorsal root ganglion neurons where it regulates neuronal firing. Several studies have implicated the Slack channel in pain processing, but the precise mechanism or the levels within the sensory pathway where channels are involved remain unclear. Here, we furthered the behavioral characterization of Slack channel knockout mice and for the first time examined the role of Slack channels in the superficial, pain-processing lamina of the dorsal horn. We performed whole-cell recordings from spinal cord slices to examine the intrinsic and synaptic properties of putative inhibitory and excitatory lamina II interneurons. Slack channel deletion altered intrinsic properties and synaptic drive to favor an overall enhanced excitatory tone. We measured the amplitudes and paired pulse ratio of paired excitatory post-synaptic currents at primary afferent synapses evoked by electrical stimulation of the dorsal root entry zone. We found a substantial decrease in the paired pulse ratio at synapses in Slack deleted neurons compared to wildtype, indicating increased presynaptic release from primary afferents. Corroborating these data, plantar test showed Slack knockout mice have an enhanced nociceptive responsiveness to localized thermal stimuli compared to wildtype mice. Our findings suggest that Slack channels regulate synaptic transmission within the spinal cord dorsal horn and by doing so establishes the threshold for thermal nociception.
Asunto(s)
Proteínas del Tejido Nervioso/metabolismo , Canales de Potasio/metabolismo , Asta Dorsal de la Médula Espinal/metabolismo , Sinapsis/metabolismo , Transmisión Sináptica/fisiología , Vías Aferentes/metabolismo , Animales , Estimulación Eléctrica/métodos , Ganglios Espinales/metabolismo , Ratones Noqueados , Proteínas del Tejido Nervioso/genética , Nociceptores/fisiología , Dolor/metabolismo , Células del Asta Posterior/metabolismo , Canales de Potasio/genética , Canales de potasio activados por SodioRESUMEN
Human mutations in the cytoplasmic C-terminal domain of Slack sodium-activated potassium (KNa) channels result in childhood epilepsy with severe intellectual disability. Slack currents can be increased by pharmacological activators or by phosphorylation of a Slack C-terminal residue by protein kinase C. Using an optical biosensor assay, we find that Slack channel stimulation in neurons or transfected cells produces loss of mass near the plasma membrane. Slack mutants associated with intellectual disability fail to trigger any change in mass. The loss of mass results from the dissociation of the protein phosphatase 1 (PP1) targeting protein, Phactr-1, from the channel. Phactr1 dissociation is specific to wild-type Slack channels and is not observed when related potassium channels are stimulated. Our findings suggest that Slack channels are coupled to cytoplasmic signaling pathways and that dysregulation of this coupling may trigger the aberrant intellectual development associated with specific childhood epilepsies.
Asunto(s)
Membrana Celular/metabolismo , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Proteínas de Microfilamentos/genética , Proteínas del Tejido Nervioso/genética , Neuronas/metabolismo , Canales de Potasio/genética , Transducción de Señal , Proteínas Adaptadoras Transductoras de Señales/antagonistas & inhibidores , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Técnicas Biosensibles , Bitionol/farmacología , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Membrana Celular/efectos de los fármacos , Corteza Cerebral/citología , Corteza Cerebral/efectos de los fármacos , Corteza Cerebral/metabolismo , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/antagonistas & inhibidores , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Regulación de la Expresión Génica , Células HEK293 , Humanos , Transporte Iónico/efectos de los fármacos , Ratones , Ratones Noqueados , Proteínas de Microfilamentos/antagonistas & inhibidores , Proteínas de Microfilamentos/metabolismo , Mutación , Proteínas del Tejido Nervioso/agonistas , Proteínas del Tejido Nervioso/metabolismo , Neuronas/citología , Neuronas/efectos de los fármacos , Técnicas de Placa-Clamp , Fosforilación , Canales de Potasio/agonistas , Canales de Potasio/metabolismo , Canales de potasio activados por Sodio , Cultivo Primario de Células , Unión Proteica , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Tiazolidinas/farmacología , Xenopus laevisRESUMEN
Kcnt1 encoded sodium-activated potassium channels (Slack channels) are highly expressed throughout the brain where they modulate the firing patterns and general excitability of many types of neurons. Increasing evidence suggests that Slack channels may be important for higher brain functions such as cognition and normal intellectual development. In particular, recent findings have shown that human Slack mutations produce very severe intellectual disability and that Slack channels interact directly with the Fragile X mental retardation protein (FMRP), a protein that when missing or mutated results in Fragile X syndrome (FXS), the most common form of inherited intellectual disability and autism in humans. We have now analyzed a recently developed Kcnt1 null mouse model in several behavioral tasks to assess which aspects of memory and learning are dependent on Slack. We demonstrate that Slack deficiency results in mildly altered general locomotor activity, but normal working memory, reference memory, as well as cerebellar control of motor functions. In contrast, we find that Slack channels are required for cognitive flexibility, including reversal learning processes and the ability to adapt quickly to unfamiliar situations and environments. Our data reveal that hippocampal-dependent spatial learning capabilities require the proper function of Slack channels.
Asunto(s)
Adaptación Psicológica/fisiología , Cognición/fisiología , Aprendizaje por Laberinto/fisiología , Memoria/fisiología , Proteínas del Tejido Nervioso/metabolismo , Canales de Potasio/metabolismo , Aprendizaje Inverso/fisiología , Animales , Cerebelo/metabolismo , Conducta Exploratoria/fisiología , Hipocampo/metabolismo , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Motivación/fisiología , Actividad Motora/fisiología , Proteínas del Tejido Nervioso/genética , Canales de Potasio/genética , Canales de potasio activados por SodioRESUMEN
Slack (Slo2.2) is a sodium-activated potassium channel that regulates neuronal firing activities and patterns. Previous studies identified Slack in sensory neurons, but its contribution to acute and chronic pain in vivo remains elusive. Here we generated global and sensory neuron-specific Slack mutant mice and analyzed their behavior in various animal models of pain. Global ablation of Slack led to increased hypersensitivity in models of neuropathic pain, whereas the behavior in models of inflammatory and acute nociceptive pain was normal. Neuropathic pain behaviors were also exaggerated after ablation of Slack selectively in sensory neurons. Notably, the Slack opener loxapine ameliorated persisting neuropathic pain behaviors. In conclusion, Slack selectively controls the sensory input in neuropathic pain states, suggesting that modulating its activity might represent a novel strategy for management of neuropathic pain.