RESUMEN
The 2-propanol (i-PrOH) adsorption properties of InOF-1 are investigated along with the confinement of small amounts of this alcohol to enhance the CO2 capture for i-PrOH@InOF-1 (1.25-fold improvement compared to pristine InOF-1). InOF-1 exhibited a high affinity towards i-PrOH, experimentally quantified by ΔHads (-55 kJ mol-1), and DFT geometry optimisations showed strong hydrogen bonding between O(i-PrOH) and H(µ2-OH). Quantum chemical models demonstrated that the CO2 capture increase for i-PrOH@InOF-1 was due to a decrease in the void surface of InOF-1 (bottleneck effect), and the formation of essential hydrogen bonds of CO2 with i-PrOH and with the hydroxo functional group (µ2-OH) of InOF-1.
RESUMEN
PURPOSE: Cardiac-sparing whole lung intensity modulated radiation therapy (WL IMRT) has been shown to improve cardiac protection and lung volume dose coverage compared with standard anteroposterior techniques. This dosimetry study had 2 aims: To determine the dosimetric advantages of a modified WL IMRT (M-WL IMRT) technique, designed to reduce radiation exposure to the thyroid gland and breast tissues, compared with standard WL IMRT (S-WL IMRT) and to determine the dosimetric advantages of M-WL IMRT and dosimetrically matched abdomen and flank radiation therapy (RT) fields designed to reduce normal tissue exposure compared with standard field matching techniques. METHODS AND MATERIALS: Computed tomography scans of the chest and abdomen that were obtained during computed tomography simulation of 10 female children were used. For Aim 1, for S-WL IMRT, the planning target volume (PTV) was obtained with a 1-cm expansion of the 4-dimensional lung volume (internal target volume). For M-WL IMRT, the PTV was reduced around the breast and thyroid gland to facilitate thyroid and breast sparing. For Aim 2, standard matching techniques for 3-dimensional anterior/posterior-posterior/anteriorwhole lung and abdominal RT fields were compared with a new dosimetric matching technique for WL IMRT and abdomen and flank fields. For both aims, the dose coverage of the lungs and radiation exposure to normal tissues (heart, thyroid, breasts) were statistically compared. RESULTS: Compared with S-WL IMRT, the M-WL IMRT technique provided similar lung PTV dose coverage and a significantly superior reduction in mean breast and thyroid doses, without compromising cardiac protection. The M-WL IMRT technique combined with a dosimetrically matched abdomen and flank fields showed significantly superior normal tissue protection compared with standard matched anterior/posterior-posterior/anteriorlung and abdomen and flank RT fields. CONCLUSIONS: This study has shown that the M-WL IMRT technique can reduce radiation exposure to the thyroid gland and breast tissue without compromising cardiac protection and 4-dimensional lung volume dose coverage. This report also describes a new dosimetric matching technique between WL IMRT and abdomen and flank fields that will improve normal tissue sparing compared with standard techniques.
Asunto(s)
Abdomen/efectos de la radiación , Corazón/efectos de la radiación , Neoplasias Renales/radioterapia , Pulmón/efectos de la radiación , Tratamientos Conservadores del Órgano/métodos , Planificación de la Radioterapia Asistida por Computador/métodos , Tumor de Wilms/radioterapia , Abdomen/diagnóstico por imagen , Adolescente , Niño , Preescolar , Estudios de Factibilidad , Femenino , Estudios de Seguimiento , Corazón/diagnóstico por imagen , Humanos , Lactante , Neoplasias Renales/diagnóstico por imagen , Neoplasias Renales/patología , Pulmón/diagnóstico por imagen , Órganos en Riesgo/efectos de la radiación , Pronóstico , Estudios Prospectivos , Dosificación Radioterapéutica , Radioterapia de Intensidad Modulada/métodos , Tomografía Computarizada por Rayos X/métodos , Tumor de Wilms/diagnóstico por imagen , Tumor de Wilms/patologíaRESUMEN
The toluene adsorption properties of InOF-1 are studied along with the confinement of small amounts of this non-polar molecule revealing a 1.38-fold increase in CO2 capture, from 5.26 wt% under anhydrous conditions to 7.28 wt% with a 1.5 wt% of pre-confined toluene at 298 K. The InOF-1 affinity towards toluene was experimentally quantified by ΔH ads (-46.81 kJ mol-1). InOF-1 is shown to be a promising material for CO2 capture under industrial conditions. Computational calculations (DFT and QTAIM) and DRIFTs in situ experiments provided a possible explanation for the experimental CO2 capture enhancement by showing how the toluene molecule is confined within InOF-1, which constructed a "bottleneck effect".