Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38496580

RESUMEN

Pediatric high-grade glioma (pHGG) is an incurable central nervous system malignancy that is a leading cause of pediatric cancer death. While pHGG shares many similarities to adult glioma, it is increasingly recognized as a molecularly distinct, yet highly heterogeneous disease. In this study, we longitudinally profiled a molecularly diverse cohort of 16 pHGG patients before and after standard therapy through single-nucleus RNA and ATAC sequencing, whole-genome sequencing, and CODEX spatial proteomics to capture the evolution of the tumor microenvironment during progression following treatment. We found that the canonical neoplastic cell phenotypes of adult glioblastoma are insufficient to capture the range of tumor cell states in a pediatric cohort and observed differential tumor-myeloid interactions between malignant cell states. We identified key transcriptional regulators of pHGG cell states and did not observe the marked proneural to mesenchymal shift characteristic of adult glioblastoma. We showed that essential neuromodulators and the interferon response are upregulated post-therapy along with an increase in non-neoplastic oligodendrocytes. Through in vitro pharmacological perturbation, we demonstrated novel malignant cell-intrinsic targets. This multiomic atlas of longitudinal pHGG captures the key features of therapy response that support distinction from its adult counterpart and suggests therapeutic strategies which are targeted to pediatric gliomas.

2.
Nat Biotechnol ; 42(2): 305-315, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37095348

RESUMEN

Simple, efficient and well-tolerated delivery of CRISPR genome editing systems into primary cells remains a major challenge. Here we describe an engineered Peptide-Assisted Genome Editing (PAGE) CRISPR-Cas system for rapid and robust editing of primary cells with minimal toxicity. The PAGE system requires only a 30-min incubation with a cell-penetrating Cas9 or Cas12a and a cell-penetrating endosomal escape peptide to achieve robust single and multiplex genome editing. Unlike electroporation-based methods, PAGE gene editing has low cellular toxicity and shows no significant transcriptional perturbation. We demonstrate rapid and efficient editing of primary cells, including human and mouse T cells, as well as human hematopoietic progenitor cells, with editing efficiencies upwards of 98%. PAGE provides a broadly generalizable platform for next-generation genome engineering in primary cells.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Humanos , Animales , Ratones , Edición Génica/métodos , Sistemas CRISPR-Cas/genética , Electroporación , Células Madre Hematopoyéticas
3.
Cell ; 186(22): 4851-4867.e20, 2023 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-37848036

RESUMEN

Post-acute sequelae of COVID-19 (PASC, "Long COVID") pose a significant global health challenge. The pathophysiology is unknown, and no effective treatments have been found to date. Several hypotheses have been formulated to explain the etiology of PASC, including viral persistence, chronic inflammation, hypercoagulability, and autonomic dysfunction. Here, we propose a mechanism that links all four hypotheses in a single pathway and provides actionable insights for therapeutic interventions. We find that PASC are associated with serotonin reduction. Viral infection and type I interferon-driven inflammation reduce serotonin through three mechanisms: diminished intestinal absorption of the serotonin precursor tryptophan; platelet hyperactivation and thrombocytopenia, which impacts serotonin storage; and enhanced MAO-mediated serotonin turnover. Peripheral serotonin reduction, in turn, impedes the activity of the vagus nerve and thereby impairs hippocampal responses and memory. These findings provide a possible explanation for neurocognitive symptoms associated with viral persistence in Long COVID, which may extend to other post-viral syndromes.


Asunto(s)
Síndrome Post Agudo de COVID-19 , Serotonina , Humanos , COVID-19/complicaciones , Progresión de la Enfermedad , Inflamación , Síndrome Post Agudo de COVID-19/sangre , Síndrome Post Agudo de COVID-19/patología , Serotonina/sangre , Virosis
4.
Nat Immunol ; 24(10): 1711-1724, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37735592

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection of vaccinated individuals is increasingly common but rarely results in severe disease, likely due to the enhanced potency and accelerated kinetics of memory immune responses. However, there have been few opportunities to rigorously study early recall responses during human viral infection. To better understand human immune memory and identify potential mediators of lasting vaccine efficacy, we used high-dimensional flow cytometry and SARS-CoV-2 antigen probes to examine immune responses in longitudinal samples from vaccinated individuals infected during the Omicron wave. These studies revealed heightened spike-specific responses during infection of vaccinated compared to unvaccinated individuals. Spike-specific cluster of differentiation (CD)4 T cells and plasmablasts expanded and CD8 T cells were robustly activated during the first week. In contrast, memory B cell activation, neutralizing antibody production and primary responses to nonspike antigens occurred during the second week. Collectively, these data demonstrate the functionality of vaccine-primed immune memory and highlight memory T cells as rapid responders during SARS-CoV-2 infection.

5.
Cell Rep ; 42(8): 112905, 2023 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-37527035

RESUMEN

CD8+ T cell exhaustion (TEX) impairs the ability of T cells to clear chronic infection or cancer. While TEX are hypofunctional, some TEX retain effector gene signatures, a feature associated with killer lectin-like receptor (KLR) expression. Although KLR+ TEX (TKLR) may improve control of chronic antigen, the signaling molecules regulating this population are poorly understood. Using single-cell RNA sequencing (scRNA-seq), flow cytometry, RNA velocity, and single-cell T cell receptor sequencing (scTCR-seq), we demonstrate that deleting the pseudokinase Trib1 shifts TEX toward CX3CR1+ intermediates with robust enrichment of TKLR via clonal T cell expansion. Adoptive transfer studies demonstrate this shift toward CD8+ TKLR in Trib1-deficient cells is CD8 intrinsic, while CD4-depletion studies demonstrate CD4+ T cells are required for improved viral control in Trib1 conditional knockout mice. Further, Trib1 loss augments anti-programmed death-ligand 1 (PD-L1) blockade to improve viral clearance. These data identify Trib1 as an important regulator of CD8+ TEX whose targeting enhances the TKLR effector state and improves checkpoint inhibitor therapy.


Asunto(s)
Linfocitos T CD8-positivos , Neoplasias , Animales , Ratones , Neoplasias/metabolismo , Receptores de Antígenos de Linfocitos T/metabolismo , Ratones Noqueados , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo
6.
Sci Immunol ; 8(86): eade3369, 2023 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-37595022

RESUMEN

Identifying molecular mechanisms of exhausted CD8 T cells (Tex) is a key goal of improving immunotherapy of cancer and other diseases. However, high-throughput interrogation of in vivo Tex can be costly and inefficient. In vitro models of Tex are easily customizable and quickly generate high cellular yield, enabling CRISPR screening and other high-throughput assays. We established an in vitro model of chronic stimulation and benchmarked key phenotypic, functional, transcriptional, and epigenetic features against bona fide in vivo Tex. We leveraged this model of in vitro chronic stimulation in combination with CRISPR screening to identify transcriptional regulators of T cell exhaustion. This approach identified several transcription factors, including BHLHE40. In vitro and in vivo validation defined a role for BHLHE40 in regulating a key differentiation checkpoint between progenitor and intermediate Tex subsets. By developing and benchmarking an in vitro model of Tex, then applying high-throughput CRISPR screening, we demonstrate the utility of mechanistically annotated in vitro models of Tex.


Asunto(s)
Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Agotamiento de Células T , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Linfocitos T CD8-positivos , Diferenciación Celular , Epigenómica
7.
Immunity ; 56(6): 1320-1340.e10, 2023 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-37315535

RESUMEN

CD8+ T cell exhaustion (Tex) limits disease control during chronic viral infections and cancer. Here, we investigated the epigenetic factors mediating major chromatin-remodeling events in Tex-cell development. A protein-domain-focused in vivo CRISPR screen identified distinct functions for two versions of the SWI/SNF chromatin-remodeling complex in Tex-cell differentiation. Depletion of the canonical SWI/SNF form, BAF, impaired initial CD8+ T cell responses in acute and chronic infection. In contrast, disruption of PBAF enhanced Tex-cell proliferation and survival. Mechanistically, PBAF regulated the epigenetic and transcriptional transition from TCF-1+ progenitor Tex cells to more differentiated TCF-1- Tex subsets. Whereas PBAF acted to preserve Tex progenitor biology, BAF was required to generate effector-like Tex cells, suggesting that the balance of these factors coordinates Tex-cell subset differentiation. Targeting PBAF improved tumor control both alone and in combination with anti-PD-L1 immunotherapy. Thus, PBAF may present a therapeutic target in cancer immunotherapy.


Asunto(s)
Linfocitos T CD8-positivos , Ensamble y Desensamble de Cromatina , Cromatina , Diferenciación Celular , Epigénesis Genética
8.
bioRxiv ; 2023 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-37131713

RESUMEN

Identifying novel molecular mechanisms of exhausted CD8 T cells (T ex ) is a key goal of improving immunotherapy of cancer and other diseases. However, high-throughput interrogation of in vivo T ex can be costly and inefficient. In vitro models of T ex are easily customizable and quickly generate high cellular yield, offering an opportunity to perform CRISPR screening and other high-throughput assays. We established an in vitro model of chronic stimulation and benchmarked key phenotypic, functional, transcriptional, and epigenetic features against bona fide in vivo T ex . We leveraged this model of in vitro chronic stimulation in combination with pooled CRISPR screening to uncover transcriptional regulators of T cell exhaustion. This approach identified several transcription factors, including BHLHE40. In vitro and in vivo validation defined a role for BHLHE40 in regulating a key differentiation checkpoint between progenitor and intermediate subsets of T ex . By developing and benchmarking an in vitro model of T ex , we demonstrate the utility of mechanistically annotated in vitro models of T ex , in combination with high-throughput approaches, as a discovery pipeline to uncover novel T ex biology.

9.
bioRxiv ; 2023 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-36824931

RESUMEN

T cell exhaustion (T EX ) impairs the ability of T cells to clear chronic infection or cancer. While exhausted T cells are hypofunctional, some exhausted T cells retain effector gene signatures, a feature that is associated with expression of KLRs (killer lectin-like receptors). Although KLR + T cells may improve control of chronic antigen, the signaling molecules regulating this population are poorly understood. Using scRNA-seq, flow cytometry, RNA velocity, and scTCR-seq, we demonstrate that deleting the pseudokinase Trib1 shifts T EX towards CX3CR1 + intermediates (T INT ) with robust enrichment of KLR + CD8 + T cells (T KLR ) via clonal T cell expansion. These changes are associated with globally increased KLR gene expression throughout the exhaustion program. Further, Trib1 loss augments anti-PD-L1 blockade to improve viral clearance by expanding the T KLR population. Together, these data identify Trib1 as an important regulator of T cell exhaustion whose targeting enhances the KLR + effector state and improves the response to checkpoint inhibitor therapy.

10.
bioRxiv ; 2023 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-36798171

RESUMEN

SARS-CoV-2 infection of vaccinated individuals is increasingly common but rarely results in severe disease, likely due to the enhanced potency and accelerated kinetics of memory immune responses. However, there have been few opportunities to rigorously study early recall responses during human viral infection. To better understand human immune memory and identify potential mediators of lasting vaccine efficacy, we used high-dimensional flow cytometry and SARS-CoV-2 antigen probes to examine immune responses in longitudinal samples from vaccinated individuals infected during the Omicron wave. These studies revealed heightened Spike-specific responses during infection of vaccinated compared to unvaccinated individuals. Spike-specific CD4 T cells and plasmablasts expanded and CD8 T cells were robustly activated during the first week. In contrast, memory B cell activation, neutralizing antibody production, and primary responses to non-Spike antigens occurred during the second week. Collectively, these data demonstrate the functionality of vaccine-primed immune memory and highlight memory T cells as rapid responders during SARS-CoV-2 infection.

11.
Nat Immunol ; 23(11): 1600-1613, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36271148

RESUMEN

Naïve CD8+ T cells can differentiate into effector (Teff), memory (Tmem) or exhausted (Tex) T cells. These developmental pathways are associated with distinct transcriptional and epigenetic changes that endow cells with different functional capacities and therefore therapeutic potential. The molecular circuitry underlying these developmental trajectories and the extent of heterogeneity within Teff, Tmem and Tex populations remain poorly understood. Here, we used the lymphocytic choriomeningitis virus model of acute-resolving and chronic infection to address these gaps by applying longitudinal single-cell RNA-sequencing (scRNA-seq) and single-cell assay for transposase-accessible chromatin sequencing (scATAC-seq) analyses. These analyses uncovered new subsets, including a subpopulation of Tex cells expressing natural killer cell-associated genes that is dependent on the transcription factor Zeb2, as well as multiple distinct TCF-1+ stem/progenitor-like subsets in acute and chronic infection. These data also revealed insights into the reshaping of Tex subsets following programmed death 1 (PD-1) pathway blockade and identified a key role for the cell stress regulator, Btg1, in establishing the Tex population. Finally, these results highlighted how the same biological circuits such as cytotoxicity or stem/progenitor pathways can be used by CD8+ T cell subsets with highly divergent underlying chromatin landscapes generated during different infections.


Asunto(s)
Linfocitos T CD8-positivos , Coriomeningitis Linfocítica , Humanos , Linfocitos T CD8-positivos/metabolismo , Transcriptoma , Virus de la Coriomeningitis Linfocítica , Epigénesis Genética , Cromatina/genética , Cromatina/metabolismo , Coriomeningitis Linfocítica/metabolismo
12.
EBioMedicine ; 84: 104254, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36150362

RESUMEN

BACKGROUND: Immune checkpoint blockade (ICB) partially reverses the dysfunctional state of antigen-specific T cell in chronic infections. However, its impact on the diverse subsets of CD4+ T cells in humans is largely unknown. METHODS: We examined immune checkpoint (IC) expression and function in HIV-specific CD4+ T cells of viremic individuals (≥5000 vRNA cp/ml, n = 17) prior to ART and persons with spontaneous (n = 11) or therapy-induced (n = 16) viral suppression (<40 cp/ml). We investigated IC patterns associated with exhaustion-related transcription factors and chemokine receptors using activation-induced marker assays. We determined effector functions representative of TFH, TH1, and TH17/TH22 using RNA flow cytometric fluorescence in situ hybridization (FISH). We compared increase in cytokine expression upon ICB across functions and patient status. FINDINGS: Expression of dysfunction-related molecules, such as transcription factors and ICs PD-1, TIGIT, and CD200, followed a hierarchy associated with infection status and effector profile. In vitro responsiveness to PD-L1 blockade varied with defined functions rather than IC levels: frequencies of cells with TH1- and TH17/TH22-, but not TFH-related functions, increased. Cells co-expressing TH1 and TFH functions showed response to ICB, suggesting that the cell's state rather than function dictates responsiveness to PD-L1 blockade. Response to PD-L1 blockade was strongest in viremic participants and reduced after ART initiation. INTERPRETATION: Our data highlight a polarization-specific regulation of IC expression and differing sensitivities of antigen-specific T helper subsets to PD-1-mediated inhibition. This heterogeneity may direct and constrain ICB efficacy in restoring CD4+ T cell function in HIV infection and other diseases. FUNDING: NIH, CIHR, CFI, FRQS.


Asunto(s)
Antígeno B7-H1 , Infecciones por VIH , Antígeno B7-H1/metabolismo , Linfocitos T CD4-Positivos , Citocinas/metabolismo , Humanos , Inhibidores de Puntos de Control Inmunológico , Hibridación Fluorescente in Situ , Receptor de Muerte Celular Programada 1/genética , Receptor de Muerte Celular Programada 1/metabolismo , ARN/uso terapéutico , Receptores de Quimiocina/metabolismo , Receptores de Quimiocina/uso terapéutico , Receptores Inmunológicos/metabolismo , Factores de Transcripción/metabolismo
14.
Cell ; 185(11): 1875-1887.e8, 2022 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-35523182

RESUMEN

We examined antibody and memory B cell responses longitudinally for ∼9-10 months after primary 2-dose SARS-CoV-2 mRNA vaccination and 3 months after a 3rd dose. Antibody decay stabilized between 6 and 9 months, and antibody quality continued to improve for at least 9 months after 2-dose vaccination. Spike- and RBD-specific memory B cells remained durable over time, and 40%-50% of RBD-specific memory B cells simultaneously bound the Alpha, Beta, Delta, and Omicron variants. Omicron-binding memory B cells were efficiently reactivated by a 3rd dose of wild-type vaccine and correlated with the corresponding increase in neutralizing antibody titers. In contrast, pre-3rd dose antibody titers inversely correlated with the fold-change of antibody boosting, suggesting that high levels of circulating antibodies may limit the added protection afforded by repeat short interval boosting. These data provide insight into the quantity and quality of mRNA-vaccine-induced immunity over time through 3 or more antigen exposures.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Anticuerpos Neutralizantes , Anticuerpos Antivirales , COVID-19/prevención & control , Humanos , ARN Mensajero , SARS-CoV-2 , Vacunas Sintéticas , Vacunas de ARNm
15.
Front Immunol ; 13: 834988, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35309299

RESUMEN

Patients with COVID-19 present with a wide variety of clinical manifestations. Thromboembolic events constitute a significant cause of morbidity and mortality in patients infected with SARS-CoV-2. Severe COVID-19 has been associated with hyperinflammation and pre-existing cardiovascular disease. Platelets are important mediators and sensors of inflammation and are directly affected by cardiovascular stressors. In this report, we found that platelets from severely ill, hospitalized COVID-19 patients exhibited higher basal levels of activation measured by P-selectin surface expression and had poor functional reserve upon in vitro stimulation. To investigate this question in more detail, we developed an assay to assess the capacity of plasma from COVID-19 patients to activate platelets from healthy donors. Platelet activation was a common feature of plasma from COVID-19 patients and correlated with key measures of clinical outcome including kidney and liver injury, and APACHEIII scores. Further, we identified ferritin as a pivotal clinical marker associated with platelet hyperactivation. The COVID-19 plasma-mediated effect on control platelets was highest for patients that subsequently developed inpatient thrombotic events. Proteomic analysis of plasma from COVID-19 patients identified key mediators of inflammation and cardiovascular disease that positively correlated with in vitro platelet activation. Mechanistically, blocking the signaling of the FcγRIIa-Syk and C5a-C5aR pathways on platelets, using antibody-mediated neutralization, IgG depletion or the Syk inhibitor fostamatinib, reversed this hyperactivity driven by COVID-19 plasma and prevented platelet aggregation in endothelial microfluidic chamber conditions. These data identified these potentially actionable pathways as central for platelet activation and/or vascular complications and clinical outcomes in COVID-19 patients. In conclusion, we reveal a key role of platelet-mediated immunothrombosis in COVID-19 and identify distinct, clinically relevant, targetable signaling pathways that mediate this effect.


Asunto(s)
Plaquetas/inmunología , COVID-19/inmunología , Complemento C5a/metabolismo , Receptor de Anafilatoxina C5a/metabolismo , Receptores de IgG/metabolismo , SARS-CoV-2/fisiología , Tromboembolia/inmunología , Adulto , Aminopiridinas/farmacología , Células Cultivadas , Femenino , Hospitalización , Humanos , Masculino , Morfolinas/farmacología , Activación Plaquetaria , Pirimidinas/farmacología , Índice de Severidad de la Enfermedad , Transducción de Señal , Quinasa Syk/antagonistas & inhibidores
16.
Immunity ; 55(3): 557-574.e7, 2022 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-35263570

RESUMEN

The clinical benefit of T cell immunotherapies remains limited by incomplete understanding of T cell differentiation and dysfunction. We generated an epigenetic and transcriptional atlas of T cell differentiation from healthy humans that included exhausted CD8 T cells and applied this resource in three ways. First, we identified modules of gene expression and chromatin accessibility, revealing molecular coordination of differentiation after activation and between central memory and effector memory. Second, we applied this healthy molecular framework to three settings-a neoadjuvant anti-PD1 melanoma trial, a basal cell carcinoma scATAC-seq dataset, and autoimmune disease-associated SNPs-yielding insights into disease-specific biology. Third, we predicted genome-wide cis-regulatory elements and validated this approach for key effector genes using CRISPR interference, providing functional annotation and demonstrating the ability to identify targets for non-coding cellular engineering. These studies define epigenetic and transcriptional regulation of human T cells and illustrate the utility of interrogating disease in the context of a healthy T cell atlas.


Asunto(s)
Epigenómica , Activación de Linfocitos , Linfocitos T CD8-positivos , Diferenciación Celular/genética , Cromatina/genética , Cromatina/metabolismo , Epigénesis Genética , Humanos , Activación de Linfocitos/genética
17.
bioRxiv ; 2022 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-35233575

RESUMEN

Despite a clear role in protective immunity, the durability and quality of antibody and memory B cell responses induced by mRNA vaccination, particularly by a 3 rd dose of vaccine, remains unclear. Here, we examined antibody and memory B cell responses in a cohort of individuals sampled longitudinally for ∼9-10 months after the primary 2-dose mRNA vaccine series, as well as for ∼3 months after a 3 rd mRNA vaccine dose. Notably, antibody decay slowed significantly between 6- and 9-months post-primary vaccination, essentially stabilizing at the time of the 3 rd dose. Antibody quality also continued to improve for at least 9 months after primary 2-dose vaccination. Spike- and RBD-specific memory B cells were stable through 9 months post-vaccination with no evidence of decline over time, and ∼40-50% of RBD-specific memory B cells were capable of simultaneously recognizing the Alpha, Beta, Delta, and Omicron variants. Omicron-binding memory B cells induced by the first 2 doses of mRNA vaccine were boosted significantly by a 3rd dose and the magnitude of this boosting was similar to memory B cells specific for other variants. Pre-3 rd dose memory B cell frequencies correlated with the increase in neutralizing antibody titers after the 3 rd dose. In contrast, pre-3 rd dose antibody titers inversely correlated with the fold-change of antibody boosting, suggesting that high levels of circulating antibodies may limit reactivation of immunological memory and constrain further antibody boosting by mRNA vaccines. These data provide a deeper understanding of how the quantity and quality of antibody and memory B cell responses change over time and number of antigen exposures. These data also provide insight into potential immune dynamics following recall responses to additional vaccine doses or post-vaccination infections.

18.
Nat Commun ; 12(1): 7222, 2021 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-34893640

RESUMEN

Multi-system Inflammatory Syndrome in Children (MIS-C) is a major complication of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection in pediatric patients. Weeks after an often mild or asymptomatic initial infection with SARS-CoV-2 children may present with a severe shock-like picture and marked inflammation. Children with MIS-C present with varying degrees of cardiovascular and hyperinflammatory symptoms. Here we perform a comprehensive analysis of the plasma proteome of more than 1400 proteins in children with SARS-CoV-2. We hypothesize that the proteome would reflect heterogeneity in hyperinflammation and vascular injury, and further identify pathogenic mediators of disease. We show that protein signatures demonstrate overlap between MIS-C, and the inflammatory syndromes macrophage activation syndrome (MAS) and thrombotic microangiopathy (TMA). We demonstrate that PLA2G2A is an important marker of MIS-C that associates with TMA. We find that IFNγ responses are dysregulated in MIS-C patients, and that IFNγ levels delineate clinical heterogeneity.


Asunto(s)
COVID-19/complicaciones , Endotelio Vascular/fisiopatología , Interferón gamma/inmunología , Proteoma , Síndrome de Respuesta Inflamatoria Sistémica/patología , Biomarcadores , COVID-19/metabolismo , COVID-19/patología , Estudios de Casos y Controles , Quimiocina CXCL9 , Niño , Fosfolipasas A2 Grupo II , Humanos , Inflamación , Interleucina-10 , Proteómica , Síndrome de Respuesta Inflamatoria Sistémica/metabolismo , Enfermedades Vasculares
19.
Science ; 374(6572): abm0829, 2021 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-34648302

RESUMEN

The durability of immune memory after severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) messenger RNA (mRNA) vaccination remains unclear. In this study, we longitudinally profiled vaccine responses in SARS-CoV-2­naïve and ­recovered individuals for 6 months after vaccination. Antibodies declined from peak levels but remained detectable in most subjects at 6 months. By contrast, mRNA vaccines generated functional memory B cells that increased from 3 to 6 months postvaccination, with the majority of these cells cross-binding the Alpha, Beta, and Delta variants. mRNA vaccination further induced antigen-specific CD4+ and CD8+ T cells, and early CD4+ T cell responses correlated with long-term humoral immunity. Recall responses to vaccination in individuals with preexisting immunity primarily increased antibody levels without substantially altering antibody decay rates. Together, these findings demonstrate robust cellular immune memory to SARS-CoV-2 and its variants for at least 6 months after mRNA vaccination.


Asunto(s)
Vacunas contra la COVID-19/inmunología , Memoria Inmunológica , SARS-CoV-2/genética , SARS-CoV-2/inmunología , Vacunas de ARNm/inmunología , Humanos
20.
Cell Rep ; 36(9): 109643, 2021 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-34469719

RESUMEN

Although understanding the diversity of HIV-1 reservoirs is key to achieving a cure, their study at the single-cell level in primary samples remains challenging. We combine flow cytometric multiplexed fluorescent in situ RNA hybridization for different viral genes with HIV-1 p24 protein detection, cell phenotyping, and downstream near-full-length single-cell vDNA sequencing. Stimulation-induced viral RNA-positive (vRNA+) cells from viremic and antiretroviral-therapy (ART)-suppressed individuals differ in their ability to produce p24. In participants on ART, latency-reversing agents (LRAs) induce a wide variety of viral gene transcription and translation patterns with LRA class-specific differences in reactivation potency. Reactivated proviruses, including in p24+ cells, are mostly defective. Although LRAs efficiently induce transcription in all memory cell subsets, we observe induction of translation mostly in effector memory cells, rather than in the long-lived central memory pool. We identify HIV-1 clones with diverse transcriptional and translational patterns between individual cells, and this finding suggests that cell-intrinsic factors influence reservoir persistence and heterogeneity.


Asunto(s)
Perfilación de la Expresión Génica , Infecciones por VIH/virología , VIH-1/genética , Proteínas del Virus de la Inmunodeficiencia Humana/genética , Leucocitos Mononucleares/virología , Biosíntesis de Proteínas , ARN Viral/genética , Análisis de la Célula Individual , Transcripción Genética , Transcriptoma , Adulto , Anciano , Fármacos Anti-VIH/uso terapéutico , Estudios de Casos y Controles , Línea Celular , Femenino , Citometría de Flujo , Regulación Viral de la Expresión Génica , Proteína p24 del Núcleo del VIH/biosíntesis , Proteína p24 del Núcleo del VIH/genética , Infecciones por VIH/sangre , Infecciones por VIH/tratamiento farmacológico , Sobrevivientes de VIH a Largo Plazo , VIH-1/efectos de los fármacos , VIH-1/metabolismo , Proteínas del Virus de la Inmunodeficiencia Humana/biosíntesis , Humanos , Hibridación Fluorescente in Situ , Leucocitos Mononucleares/efectos de los fármacos , Leucocitos Mononucleares/metabolismo , Masculino , Persona de Mediana Edad , Biosíntesis de Proteínas/efectos de los fármacos , ARN Viral/biosíntesis , Transcripción Genética/efectos de los fármacos , Activación Viral , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA