Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 114
Filtrar
1.
Nat Rev Endocrinol ; 20(7): 414-425, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38514815

RESUMEN

The acid-labile subunit (ALS) of the insulin-like growth factor (IGF) binding protein (IGFBP) complex, encoded in humans by IGFALS, has a vital role in regulating the endocrine transport and bioavailability of IGF-1 and IGF-2. Accordingly, ALS has a considerable influence on postnatal growth and metabolism. ALS is a leucine-rich glycoprotein that forms high-affinity ternary complexes with IGFBP-3 or IGFBP-5 when they are occupied by either IGF-1 or IGF-2. These complexes constitute a stable reservoir of circulating IGFs, blocking the potentially hypoglycaemic activity of unbound IGFs. ALS is primarily synthesized by hepatocytes and its expression is lower in non-hepatic tissues. ALS synthesis is strongly induced by growth hormone and suppressed by IL-1ß, thus potentially serving as a marker of growth hormone secretion and/or activity and of inflammation. IGFALS mutations in humans and Igfals deletion in mice cause modest growth retardation and pubertal delay, accompanied by decreased osteogenesis and enhanced adipogenesis. In hepatocellular carcinoma, IGFALS is described as a tumour suppressor; however, its contribution to other cancers is not well delineated. This Review addresses the endocrine physiology and pathology of ALS, discusses the latest cell and proteomic studies that suggest emerging cellular roles for ALS and outlines its involvement in other disease states.


Asunto(s)
Glicoproteínas , Humanos , Animales , Glicoproteínas/metabolismo , Proteínas Portadoras/metabolismo , Factor I del Crecimiento Similar a la Insulina/metabolismo , Ratones , Proteínas de Unión a Factor de Crecimiento Similar a la Insulina/metabolismo , Proteínas de Unión a Factor de Crecimiento Similar a la Insulina/fisiología , Factor II del Crecimiento Similar a la Insulina/metabolismo , Sistema Endocrino/metabolismo , Péptidos Similares a la Insulina
2.
Endocr Rev ; 44(5): 753-778, 2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-36974712

RESUMEN

The 6 high-affinity insulin-like growth factor binding proteins (IGFBPs) are multifunctional proteins that modulate cell signaling through multiple pathways. Their canonical function at the cellular level is to impede access of insulin-like growth factor (IGF)-1 and IGF-2 to their principal receptor IGF1R, but IGFBPs can also inhibit, or sometimes enhance, IGF1R signaling either through their own post-translational modifications, such as phosphorylation or limited proteolysis, or by their interactions with other regulatory proteins. Beyond the regulation of IGF1R activity, IGFBPs have been shown to modulate cell survival, migration, metabolism, and other functions through mechanisms that do not appear to involve the IGF-IGF1R system. This is achieved by interacting directly or functionally with integrins, transforming growth factor ß family receptors, and other cell-surface proteins as well as intracellular ligands that are intermediates in a wide range of pathways. Within the nucleus, IGFBPs can regulate the diverse range of functions of class II nuclear hormone receptors and have roles in both cell senescence and DNA damage repair by the nonhomologous end-joining pathway, thus potentially modifying the efficacy of certain cancer therapeutics. They also modulate some immune functions and may have a role in autoimmune conditions such as rheumatoid arthritis. IGFBPs have been proposed as attractive therapeutic targets, but their ubiquity in the circulation and at the cellular level raises many challenges. By understanding the diversity of regulatory pathways with which IGFBPs interact, there may still be therapeutic opportunities based on modulation of IGFBP-dependent signaling.


Asunto(s)
Proteínas de Unión a Factor de Crecimiento Similar a la Insulina , Factor I del Crecimiento Similar a la Insulina , Humanos , Proteínas de Unión a Factor de Crecimiento Similar a la Insulina/genética , Proteínas de Unión a Factor de Crecimiento Similar a la Insulina/metabolismo , Factor I del Crecimiento Similar a la Insulina/metabolismo , Factor II del Crecimiento Similar a la Insulina/metabolismo , Transducción de Señal/fisiología
3.
Oncogene ; 41(25): 3385-3393, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35597813

RESUMEN

The insulin-like growth factors (IGFs) and their regulatory proteins-IGF receptors and binding proteins-are strongly implicated in cancer progression and modulate cell survival and proliferation, migration, angiogenesis and metastasis. By regulating the bioavailability of the type-1 IGF receptor (IGF1R) ligands, IGF-1 and IGF-2, the IGF binding proteins (IGFBP-1 to -6) play essential roles in cancer progression. IGFBPs also influence cell communications through pathways that are independent of IGF1R activation. Noncoding RNAs (ncRNAs), which encompass a variety of RNA types including microRNAs (miRNAs) and long-noncoding RNAs (lncRNAs), have roles in multiple oncogenic pathways, but their many points of intersection with IGF axis functions remain to be fully explored. This review examines the functional interactions of miRNAs and lncRNAs with IGFs and their binding proteins in cancer, and reveals how the IGF axis may mediate ncRNA actions that promote or suppress cancer. A better understanding of the links between ncRNA and IGF pathways may suggest new avenues for prognosis and therapeutic intervention in cancer. Further, by exploring examples of intersecting ncRNA-IGF pathways in non-cancer conditions, it is proposed that new opportunities for future discovery in cancer control may be generated.


Asunto(s)
MicroARNs , Neoplasias , ARN Largo no Codificante , Humanos , Proteínas de Unión a Factor de Crecimiento Similar a la Insulina/genética , Proteínas de Unión a Factor de Crecimiento Similar a la Insulina/metabolismo , Factor I del Crecimiento Similar a la Insulina/genética , Factor I del Crecimiento Similar a la Insulina/metabolismo , Factor II del Crecimiento Similar a la Insulina/genética , Factor II del Crecimiento Similar a la Insulina/metabolismo , MicroARNs/genética , Neoplasias/genética , ARN Largo no Codificante/genética , ARN no Traducido/genética , Receptores de Somatomedina/metabolismo
4.
Front Oncol ; 12: 859216, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35371992

RESUMEN

The seven mammalian FXYD proteins associate closely with α/ß heterodimers of Na+/K+-ATPase. Most of them protect the ß1 subunit against glutathionylation, an oxidative modification that destabilizes the heterodimer and inhibits Na+/K+-ATPase activity. A specific cysteine (Cys) residue of FXYD proteins is critical for such protection. One of the FXYD proteins, FXYD3, confers treatment resistance when overexpressed in cancer cells. We developed two FXYD3 peptide derivatives. FXYD3-pep CKCK retained the Cys residue that can undergo glutathionylation and that is critical for protecting the ß1 subunit against glutathionylation. FXYD3-pep SKSK had all Cys residues mutated to Serine (Ser). The chemotherapeutic doxorubicin induces oxidative stress, and suppression of FXYD3 with siRNA in pancreatic- and breast cancer cells that strongly express FXYD3 increased doxorubicin-induced cytotoxicity. Exposing cells to FXYD3-pep SKSK decreased co-immunoprecipitation of FXYD3 with the α1 Na+/K+-ATPase subunit. FXYD3-pep SKSK reproduced the increase in doxorubicin-induced cytotoxicity seen after FXYD3 siRNA transfection in pancreatic- and breast cancer cells that overexpressed FXYD3, while FXYD3-pep CKCK boosted the native protein's protection against doxorubicin. Neither peptide affected doxorubicin's cytotoxicity on cells with no or low FXYD3 expression. Fluorescently labeled FXYD3-pep SKSK was detected in a perinuclear distribution in the cells overexpressing FXYD3, and plasmalemmal Na+/K+-ATPase turnover could not be implicated in the increased sensitivity to doxorubicin that FXYD3-pep SKSK caused. FXYD peptide derivatives allow rapid elimination or amplification of native FXYD protein function. Here, their effects implicate the Cys residue that is critical for countering ß1 subunit glutathionylation in the augmentation of cytotoxicity with siRNA-induced downregulation of FXYD3.

5.
Mol Cell Endocrinol ; 533: 111338, 2021 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-34062166

RESUMEN

The epidermal growth factor receptor (EGFR) is overexpressed in many types of cancer, including epithelial ovarian cancer (EOC), and its expression has been found to correlate with advanced stage and poor prognosis. The EGFR ligand amphiregulin (AREG) has been investigated as a target for human cancer therapy and is known to have an autocrine role in many cancers. A cytokine array identified AREG as one of several cytokines upregulated by EGF in a phosphatidylinositol 3-kinase (PI3-K) dependent manner in EOC cells. To investigate the functional role of AREG in EOC, its effect on cellular migration and proliferation was assessed in two EOC cells lines, OV167 and SKOV3. AREG increased both migration and proliferation of EOC cell line models through activation of PI3-K signaling, but independent of mitogen activated protein kinase (MAPK) signaling. Through an AREG autocrine loop mediated via PI3-K, upregulation of AREG led to increased levels of both AREG transcript and secreted AREG, while downregulation of endogenous AREG decreased the ability of exogenous AREG to induce cell migration and proliferation. Further, inhibition of endogenous AREG activity or metalloproteinase activity decreased EGF-induced EOC migration and proliferation, indicating a role for soluble endogenous AREG in mediating the functional effects of EGFR in inducing migration and proliferation in EOC.


Asunto(s)
Anfirregulina/genética , Anfirregulina/metabolismo , Carcinoma Epitelial de Ovario/metabolismo , Neoplasias Ováricas/metabolismo , Comunicación Autocrina , Carcinoma Epitelial de Ovario/genética , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Factor de Crecimiento Epidérmico/farmacología , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Neoplasias Ováricas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Regulación hacia Arriba
6.
Front Oncol ; 9: 379, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31139569

RESUMEN

There are no widely-accepted prognostic markers currently available to predict outcomes in patients with triple-negative breast cancer (TNBC), and no targeted therapies with confirmed benefit. We have used MALDI mass spectrometry imaging (MSI) of tryptic peptides to compare regions of cancer and benign tissue in 10 formalin-fixed, paraffin-embedded sections of TNBC tumors. Proteins were identified by reference to a peptide library constructed by LC-MALDI-MS/MS analyses of the same tissues. The prognostic significance of proteins that distinguished between cancer and benign regions was estimated by Kaplan-Meier analysis of their gene expression from public databases. Among peptides that distinguished between cancer and benign tissue in at least 3 tissues with a ROC area under the curve >0.7, 14 represented proteins identified from the reference library, including proteins not previously associated with breast cancer. Initial network analysis using the STRING database showed no obvious functional relationships except among collagen subunits COL1A1, COL1A2, and COL63A, but manual curation, including the addition of EGFR to the analysis, revealed a unique network connecting 10 of the 14 proteins. Kaplan-Meier survival analysis to examine the relationship between tumor expression of genes encoding the 14 proteins, and recurrence-free survival (RFS) in patients with basal-like TNBC showed that, compared to low expression, high expression of nine of the genes was associated with significantly worse RFS, most with hazard ratios >2. In contrast, in estrogen receptor-positive tumors, high expression of these genes showed only low, or no, association with worse RFS. These proteins are proposed as putative markers of RFS in TNBC, and some may also be considered as possible targets for future therapies.

7.
Sci Rep ; 9(1): 2905, 2019 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-30814573

RESUMEN

Recurrence in patients with glioblastoma (GBM) is inevitable resulting in short survival times, even in patients with O-6-Methylguanine-DNA Methyltransferase (MGMT) methylation. Other pathways must be activated to escape from temozolomide (TMZ) treatment, however acquired resistance mechanisms to TMZ are not well understood. Herein, frozen tumors from 36 MGMT methylated patients grouped according to overall survival were extracted and proteins were profiled using surface-enhanced laser desorption/ionization (SELDI) with time-of flight (TOF) proteomics to identify low molecular weight proteins that associated with poor survival outcomes. Overexpression of macrophage migration inhibitory factor (MIF) was identified in human GBM specimens that were MGMT methylated but showed poor survival. This correlation was confirmed in an independent cohort of human GBM. MIF overexpression has been reported in several cancer types, including GBM. We repurposed ibudilast, a specific MIF inhibitor, and treated patient derived cell lines. Ibudilast showed modest anti-proliferative activity however, when combined with TMZ, significant synergism was observed, resulting in cell cycle arrest and apoptosis. In vivo, combined ibudilast and TMZ treatment of a patient derived xenograft (PDX) model resulted in significantly longer overall survival. Our findings have significant clinical implications for people with GBM. Since clinical trials involving ibudilast have shown no adverse side effects and the drug readily penetrates the blood brain barrier, treatment of GBM with this combination is clinically achievable.


Asunto(s)
Antineoplásicos/uso terapéutico , Neoplasias Encefálicas/tratamiento farmacológico , Glioblastoma/tratamiento farmacológico , Factores Inhibidores de la Migración de Macrófagos/metabolismo , Piridinas/uso terapéutico , Temozolomida/uso terapéutico , Anciano , Animales , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/mortalidad , Línea Celular Tumoral , Metilación de ADN , Metilasas de Modificación del ADN/genética , Enzimas Reparadoras del ADN/genética , Resistencia a Antineoplásicos , Quimioterapia Combinada , Femenino , Glioblastoma/metabolismo , Glioblastoma/mortalidad , Humanos , Masculino , Ratones Endogámicos BALB C , Ratones Desnudos , Persona de Mediana Edad , Proteoma , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Análisis de Supervivencia , Proteínas Supresoras de Tumor/genética , Regulación hacia Arriba , Ensayos Antitumor por Modelo de Xenoinjerto
8.
Cell Mol Life Sci ; 76(10): 2015-2030, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30725116

RESUMEN

Women with triple-negative breast cancer (TNBC) are generally treated by chemotherapy but their responsiveness may be blunted by DNA double-strand break (DSB) repair. We previously reported that IGFBP-3 forms nuclear complexes with EGFR and DNA-dependent protein kinase (DNA-PKcs) to modulate DSB repair by non-homologous end-joining (NHEJ) in TNBC cells. To discover IGFBP-3 binding partners involved in chemoresistance through stimulation of DSB repair, we analyzed the IGFBP-3 interactome by LC-MS/MS and confirmed interactions by coimmunoprecipitation and proximity ligation assay. Functional effects were demonstrated by DNA end-joining in vitro and measurement of γH2AX foci. In response to 20 µM etoposide, the DNA/RNA-binding protein, non-POU domain-containing octamer-binding protein (NONO) and its dimerization partner splicing factor, proline/glutamine-rich (SFPQ) formed complexes with IGFBP-3, demonstrated in basal-like TNBC cell lines HCC1806 and MDA-MB-468. NONO binding to IGFBP-3 was also shown in a cell-free biochemical assay. IGFBP-3 complexes with NONO and SFPQ were blocked by inhibiting EGFR with gefitinib or DNA-PKcs with NU7026, and by the PARP inhibitors veliparib and olaparib, which also reduced DNA end-joining activity and delayed the resolution of the γH2AX signal (i.e. inhibited DNA DSB repair). Downregulation of the long noncoding RNA in NHEJ pathway 1 (LINP1) by siRNA also blocked IGFBP-3 interaction with NONO-SFPQ. These findings suggest a PARP-dependent role for NONO and SFPQ in IGFBP-3-dependent DSB repair and the involvement of LINP1 in the complex formation. We propose that targeting of the DNA repair function of IGFBP-3 may enhance chemosensitivity in basal-like TNBC, thus improving patient outcomes.


Asunto(s)
Proteína 3 de Unión a Factor de Crecimiento Similar a la Insulina/metabolismo , Proteínas Asociadas a Matriz Nuclear/metabolismo , Factores de Transcripción de Octámeros/metabolismo , Factor de Empalme Asociado a PTB/metabolismo , Poli(ADP-Ribosa) Polimerasas/metabolismo , Proteínas de Unión al ARN/metabolismo , Bencimidazoles/farmacología , Línea Celular Tumoral , Reparación del ADN por Unión de Extremidades/efectos de los fármacos , Proteínas de Unión al ADN , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Proteína 3 de Unión a Factor de Crecimiento Similar a la Insulina/genética , Proteínas Asociadas a Matriz Nuclear/genética , Factores de Transcripción de Octámeros/genética , Factor de Empalme Asociado a PTB/genética , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Poli(ADP-Ribosa) Polimerasas/genética , Unión Proteica/efectos de los fármacos , Unión Proteica/genética , Interferencia de ARN , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Proteínas de Unión al ARN/genética , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/metabolismo , Neoplasias de la Mama Triple Negativas/patología
9.
Exp Cell Res ; 374(1): 38-45, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30419192

RESUMEN

IGFBP-3 has both stimulatory and inhibitory effects on cancer progression. The growth of EO771 mammary carcinoma cells as syngeneic tumors in C57BL/6 mice is reduced in Igfbp3-null (BP3KO) mice, suggesting that systemic IGFBP-3 enhances tumor progression. In this study we assessed the growth of EO771 cells expressing human IGFBP-3 in BP3KO mice. Cells expressing hIGFBP-3 showed decreased proliferation in vitro and increased levels of IGF-1 receptor (IGF1R) protein but not mRNA, consistent with sequestration of endogenous IGF by IGFBP-3. The growth rate of these cells was restored by exposure to IGF-1 or analogues with reduced affinity for IGFBP-3 (long Arg3-IGF-1) or IGF1R (Leu24-IGF-1). In EO771 cells implanted orthotopically into mice, hIGFBP-3 expression by the cells inhibited tumor establishment in BP3KO but not wild-type mice. For tumors that successfully established, final weight was not affected significantly by hIGFBP-3 expression. However, final tumor weight was inversely related to intratumoral T cell counts, and sera from BP3KO mice with tumors showed low-titer immunoreactivity against IGFBP-3. The contrasting effects on tumor establishment and progression of IGFBP-3 expressed by mammary carcinoma cells, compared to systemic stromal and circulating IGFBP-3, highlights the complexity of growth regulation by IGFBP-3 in mammary tumors.


Asunto(s)
Proteína 3 de Unión a Factor de Crecimiento Similar a la Insulina/metabolismo , Neoplasias Mamarias Animales/metabolismo , Neoplasias Mamarias Animales/patología , Microambiente Tumoral , Inmunidad Adaptativa , Tejido Adiposo/patología , Animales , Anticuerpos/sangre , Anticuerpos/metabolismo , Línea Celular Tumoral , Proliferación Celular , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Linfocitos Infiltrantes de Tumor/inmunología , Neoplasias Mamarias Animales/sangre , Neoplasias Mamarias Animales/genética , Ratones Endogámicos C57BL , Ratones Noqueados , Microambiente Tumoral/inmunología
10.
Artículo en Inglés | MEDLINE | ID: mdl-29623068

RESUMEN

Triple-negative breast cancer (TNBC) typically has a worse outcome than other breast cancer subtypes, in part owing to a lack of approved therapeutic targets or prognostic markers. We have previously described an oncogenic pathway in basal-like TNBC cells, initiated by insulin-like growth factor binding protein-3 (IGFBP-3), in which the epidermal growth factor receptor (EGFR) is transactivated by sphingosine-1-phosphate (S1P) resulting from sphingosine kinase (SphK)-1 activation. Oncogenic IGFBP-3 signaling can be targeted by combination treatment with the S1P receptor modulator and SphK inhibitor, fingolimod, and the EGFR kinase inhibitor, gefitinib (F + G). However, the interaction of this treatment with chemotherapy has not been documented. Since we observed nuclear localization of IGFBP-3 in some TNBC tumors, this study aimed to evaluate the prognostic significance of nuclear IGFBP-3 in pre-clinical models of basal-like TNBC treated with F + G and doxorubicin. Orthotopic xenograft tumors were grown in nude mice from the human basal-like TNBC cell lines MDA-MB-468 and HCC1806, and were treated with gefitinib, 25 mg/Kg, plus fingolimod, 5 mg/Kg, 3-times weekly. In some studies, doxorubicin was also administered once weekly for 6 weeks. Tumor tissue proteins were quantitated by immunohistochemistry (IHC). Interaction between doxorubicin and F + G was also studied in proliferation assays in vitro. In both tumor models, tissue staining for IGFBP-3 was predominantly nuclear. Combination of F + G significantly enhanced mouse survival, decreased nuclear IGFBP-3 and Ki67 staining, and increased apoptosis (cleaved caspase-3) staining. Kaplan-Meier survival analysis showed that a high tumor IGFBP-3 IHC score (>median), like a high Ki67 score, was significantly associated with shorter survival time, whereas a high apoptosis score was associated with prolonged survival. Studied in vitro in both cell lines, low-dose doxorubicin that had little effect alone, strongly enhanced the cytostatic effect of low-dose F + G combination. However, in both in vivo models, doxorubicin at maximum-tolerated dose neither inhibited tumor growth when administered alone, nor enhanced the significant inhibitory effect of F + G. We conclude that doxorubicin may not add benefit to the inhibitory effect of F + G unless its dose-limiting toxicity can be overcome. Nuclear IGFBP-3 appears to have potential as a prognostic marker in TNBC and could be evaluated for clinical utility.

11.
Endocr Relat Cancer ; 25(2): 111-122, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29217518

RESUMEN

Epidemiological studies show an association between obesity and poor breast cancer prognosis. We previously demonstrated that global IGFBP-3 deficiency, in IGFBP-3-null mice, resulted in a 50% reduction in mammary tumour growth over 3 weeks relative to tumours in wild-type (WT) C57BL/6 mice. This growth reduction was ameliorated by high fat feeding-induced obesity. This study aimed to examine how IGFBP-3 promotes tumour growth by influencing the immune tumour microenvironment in healthy and obese mice. Syngeneic EO771 cells, which lack detectable IGFBP-3 expression, were grown as orthotopic tumours in WT and IGFBP-3-null C57BL/6 mice placed on either a control chow or a high-fat diet (HFD), and examined by quantitative PCR and immunohistochemistry. In WT mice, increased stromal expression of IGFBP-3 was positively associated with tumour growth, supporting the hypothesis that IGFBP-3 in the microenvironment promotes tumour progression. Examining markers of immune cell subsets, gene expression of Ifng, Cd8a, Cd8b1 and Tnf and CD8 measured by immunohistochemistry were elevated in tumours of IGFBP-3-null mice compared to WT, indicating an accumulation of CD8+ T cells, but this increase was absent if the IGFBP-3-null mice had been exposed to HFD. Expression of these genes was negatively associated with tumour growth. Although similar among groups overall, Nkg2d and Tnfsf10 tumoural expression was associated with decreased tumour growth. Overall, the results of this study provide an immune-based mechanism by which host IGFBP-3 may promote breast tumour growth in the EO771 murine breast cancer model, and suggest that targeting IGFBP-3 might make a novel contribution to immune therapy for breast cancer.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Proteína 3 de Unión a Factor de Crecimiento Similar a la Insulina/inmunología , Neoplasias Mamarias Experimentales/inmunología , Animales , Dieta Alta en Grasa , Femenino , Perfilación de la Expresión Génica , Proteína 3 de Unión a Factor de Crecimiento Similar a la Insulina/genética , Neoplasias Mamarias Experimentales/genética , Neoplasias Mamarias Experimentales/patología , Ratones Endogámicos C57BL , Ratones Noqueados
12.
BMC Cancer ; 17(1): 820, 2017 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-29207959

RESUMEN

BACKGROUND: Targeting the type 1 insulin-like growth factor receptor (IGF1R) in breast cancer remains an ongoing clinical challenge. Oncogenic IGF1R-signaling occurs via activation of PI3K/AKT/MAPK downstream mediators which regulate cell proliferation and protein synthesis. To further understand IGF1R signaling we have investigated the involvement of the oncogenic IGF1R-related sphingosine kinase (SphK) pathway. METHODS: The prognostic (overall survival, OS) and therapeutic (anti-endocrine therapy) co-contribution of IGF1R and SphK1 were investigated using breast cancer patient samples (n = 236) for immunohistochemistry to measure total and phosphorylated IGF1R and SphK1. Kaplan-Meier and correlation analyses were performed to determine the contribution of high versus low IGF1R and/or SphK1 expression to OS in patients treated with anti-endocrine therapy. Cell viability and colony formation in vitro studies were completed using estrogen receptor (ER) positive and negative breast cancer cell-lines to determine the benefit of IGF1R inhibitor (OSI-906) and SphK inhibitor (SKI-II) co-therapy. Repeated measures and 1-way ANOVA were performed to compare drug treatments groups and the Chou-Talalay combination index (CI) was calculated to estimate drug synergism in vitro (CI < 1). RESULTS: High IGF1R and SphK1 protein co-expression in tumor tissue was associated with improved OS specifically in ER-positive disease and stratified for anti-endocrine therapy. A significant synergistic inhibition of cell viability and/or colony formation following OSI-906 and SKI-II co-treatment in vitro was evident (p < 0.05, CI < 1). CONCLUSION: We conclude that high IGF1R and SphK1 co-expression act together as prognostic indicators and are potentially, dual therapeutic targets for the development of a more effective IGF1R-directed combination breast cancer therapy.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Neoplasias de la Mama Masculina/metabolismo , Neoplasias de la Mama/metabolismo , Carcinoma Ductal de Mama/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Receptores de Somatomedina/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Neoplasias de la Mama/diagnóstico , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/mortalidad , Neoplasias de la Mama Masculina/diagnóstico , Neoplasias de la Mama Masculina/tratamiento farmacológico , Neoplasias de la Mama Masculina/mortalidad , Carcinoma Ductal de Mama/diagnóstico , Carcinoma Ductal de Mama/tratamiento farmacológico , Carcinoma Ductal de Mama/mortalidad , Supervivencia Celular/efectos de los fármacos , Sinergismo Farmacológico , Femenino , Humanos , Estimación de Kaplan-Meier , Células MCF-7 , Masculino , Persona de Mediana Edad , Análisis Multivariante , Pronóstico , Modelos de Riesgos Proporcionales , Receptor IGF Tipo 1 , Resultado del Tratamiento , Adulto Joven
13.
Mol Genet Metab Rep ; 13: 33-40, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28794993

RESUMEN

INTRODUCTION: Phosphoglucomutase 1 deficiency (PGM1 deficiency) has been identified as both, glycogenosis and congenital disorder of glycosylation (CDG). The phenotype includes hepatopathy, myopathy, oropharyngeal malformations, heart disease and growth retardation. Oral galactose supplementation at a dosage of 1 g per kg body weight per day is regarded as the therapy of choice. RESULTS: We report on a patient with a novel disease causing mutation, who was treated for 1.5 years with oral galactose supplementation. Initially, elevated transaminases were reduced and protein glycosylation of serum transferrin improved rapidly. Long-term surveillance however indicated limitations of galactose supplementation at the standard dose: 1 g per kg body weight per day did not achieve permanent correction of protein glycosylation. Even increased doses of up to 2.5 g per kg body weight did not result in complete normalization. Furthermore, we described for the first time heart rhythm abnormalities, i.e. long QT Syndrome associated with a glycosylation disorder. Mass spectrometry of IGFBP3, which was assumed to play a major role in growth retardation associated with PGM1 deficiency, revealed no glycosylation abnormalities. Growth rate did not improve under galactose supplementation. CONCLUSIONS: The results of our study indicate that the current standard dose of galactose might be too low to achieve normal glycosylation in all patients. In addition, growth retardation in PGM1 deficiency is complex and multifactorial. Furthermore, heart rhythm abnormalities must be considered when treating patients with PGM1 deficiency.

14.
Breast Cancer Res ; 19(1): 90, 2017 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-28778177

RESUMEN

BACKGROUND: New molecular targets are needed for women with triple-negative breast cancer (TNBC). This pre-clinical study investigated the combination of the EGFR inhibitor gefitinib with the sphingosine kinase (SphK) inhibitor FTY720 (Fingolimod), aiming to block tumorigenic signaling downstream of IGFBP-3, which is abundantly expressed in basal-like TNBC. METHODS: In studies of breast cancer cell growth in culture, proliferation was monitored by IncuCyte live-cell imaging, and protein abundance was determined by western blotting. In vivo studies of mammary tumor growth used two models: orthotopic xenograft tumors derived from three basal-like TNBC cell lines, grown in immune-deficient mice, and syngeneic murine 4T1 tumors grown in immune-competent mice. Protein abundance in tumor tissue was assessed by immunohistochemistry. RESULTS: Quantitated by live-cell imaging, the inhibitor combination showed synergistic cytostatic activity in basal-like cell lines across several TNBC molecular subtypes, the synergy being decreased by IGFBP-3 downregulation. Suppression of the tumorigenic mediator CD44 by gefitinib was potentiated by FTY720, consistent with CD44 involvement in the targeted pathway. In MDA-MB-468 and HCC1806 orthotopic TNBC xenograft tumors in nude mice, the drug combination inhibited tumor growth and prolonged mouse survival, although this effect was not significant for the gefitinib-resistant cell line HCC70. Combination treatment of murine 4T1 TNBC tumors in syngeneic BALB/c mice was more effective in immune-competent than immune-deficient (nude) mice, and a relative loss of tumor CD3 (T-cell) immunoreactivity caused by FTY720 treatment alone was alleviated by the drug combination, suggesting that, even at an FTY720 dose causing relative lymphopenia, the combination is still effective in an immune-competent setting. Immunohistochemistry of xenograft tumors showed significant enhancement of caspase-3 cleavage and suppression of Ki67 and phospho-EGFR by the drug combination, but SphK1 downregulation occurred only in MDA-MB-468 tumors, so is unlikely to be integral to treatment efficacy. CONCLUSIONS: Our data indicate that targeting IGFBP-3-dependent signaling pathways through gefitinib-FTY720 co-therapy may be effective in many basal-like breast cancers, and suggest tissue IGFBP-3 and CD44 measurement as potential biomarkers of treatment efficacy.


Asunto(s)
Receptores ErbB/genética , Proteína 3 de Unión a Factor de Crecimiento Similar a la Insulina/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Animales , Caspasa 3 , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Resistencia a Antineoplásicos/efectos de los fármacos , Receptores ErbB/antagonistas & inhibidores , Clorhidrato de Fingolimod/administración & dosificación , Gefitinib , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Receptores de Hialuranos/genética , Ratones , Inhibidores de Proteínas Quinasas , Quinazolinas/administración & dosificación , Transducción de Señal/efectos de los fármacos , Neoplasias de la Mama Triple Negativas/genética , Ensayos Antitumor por Modelo de Xenoinjerto
15.
Endocr Relat Cancer ; 23(11): R513-R536, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27733416

RESUMEN

Insulin-like growth factor receptor (IGF1R) signaling as a therapeutic target has been widely studied and clinically tested. Despite the vast amount of literature supporting the biological role of IGF1R in breast cancer, effective clinical translation in targeting its activity as a cancer therapy has not been successful. The intrinsic complexity of cancer cell signaling mediated by many tyrosine kinase growth factor receptors that work together to modulate each other and intracellular downstream mediators in the cell highlights that studying IGF1R expression and activity as a prognostic factor and therapeutic target in isolation is certainly associated with problems. This review discusses the current literature and clinical trials associated with IGF-1 signaling and attempts to look at new ways of designing novel IGF1R-directed breast cancer therapy approaches to target its activity and/or intracellular downstream signaling pathways in IGF1R-expressing breast cancers.


Asunto(s)
Neoplasias de la Mama/terapia , Terapia Molecular Dirigida/métodos , Receptores de Somatomedina/antagonistas & inhibidores , Animales , Neoplasias de la Mama/genética , Terapia Combinada , Resistencia a Antineoplásicos/genética , Quimioterapia Combinada , Femenino , Humanos , Medicina de Precisión/métodos , Receptor IGF Tipo 1/antagonistas & inhibidores , Receptor IGF Tipo 1/metabolismo , Transducción de Señal/genética
16.
Oncotarget ; 7(34): 55491-55505, 2016 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-27448965

RESUMEN

Obesity is associated epidemiologically with poor breast cancer prognosis, but the mechanisms remain unclear. Since IGF binding protein-3 (IGFBP-3) influences both breast cancer growth and adipocyte maturation, it may impact on how obesity promotes breast oncogenesis. This study investigated the role of endogenous IGFBP-3 on the development of obesity and subsequently on breast tumor growth. Wild-type (WT) C57BL/6 or IGFBP-3-null (BP3KO) mice were fed a high-fat diet (HFD) or control chow-diet for 15 weeks before orthotopic injection with syngeneic EO771 murine breast cancer cells. When the largest tumor reached 1000 mm3, tissues and tumors were excised for analysis. Compared to WT, BP3KO mice showed significantly reduced weight gain and mammary fat pad mass (contralateral to tumor) in response to HFD, despite similar food intake. EO771 tumor weight and volume were increased by HFD and decreased by BP3KO. Despite differences in tumor size, tumors in BP3KO mice showed no differences from WT in the number of mitotically active (Ki67+) and apoptotic (cleaved caspase-3+) cells, but had greater infiltration of CD3+ T-cells. These data suggest that endogenous (circulating and/or stromal) IGFBP-3 is stimulatory to adipose tissue expansion and enhances mammary tumor growth in immune-competent mice, potentially by suppressing T-cell infiltration into tumors.


Asunto(s)
Neoplasias de la Mama/etiología , Proteína 3 de Unión a Factor de Crecimiento Similar a la Insulina/fisiología , Obesidad/etiología , Tejido Adiposo/metabolismo , Animales , Apoptosis , Neoplasias de la Mama/irrigación sanguínea , Neoplasias de la Mama/inmunología , Neoplasias de la Mama/patología , Movimiento Celular , Dieta Alta en Grasa , Progresión de la Enfermedad , Femenino , Linfocitos Infiltrantes de Tumor/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Aumento de Peso
17.
Neoplasia ; 18(7): 425-35, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27435925

RESUMEN

BACKGROUND: Extensive cross talk exists between PI3K/Akt/mTOR and mitogen-activated protein kinase (MAPK) pathways, and both are upregulated in pancreatic ductal adenocarcinoma (PDAC). Our previous study suggested that epidermal growth factor receptor inhibitor erlotinib which acts upstream of these pathways acts synergistically with PI3K inhibitors in PDAC. Horizontal combined blockade upstream and downstream of these two pathways is therefore explored. METHODS: Erlotinib paired with PI3K inhibitor (BYL719) was tested against erlotinib plus dual PI3K/mTOR inhibitor BEZ-235, and MEK inhibitor (PD98059) plus BEZ235, on five primary PDAC cell lines and on two pairs of parent and erlotinib-resistant (ER) cell lines. A range of in vitro assays including cell proliferation, Western blotting, migration, clonogenic, cell cycle, and apopotic assays was used to test for the efficacy of combined blockade. RESULTS: Dual downstream blockade of the MAPK and PAM pathways was more effective in attenuating downstream molecular signals. Synergy was demonstrated for erlotinib and BEZ235 and for PD-98059 and BEZ-235. This resulted in a trend of increased growth cell cycle arrest, apoptosis, cell proliferation, and colony and migration suppression. This combination showed more efficacy in cell lines with acquired resistance to erlotinib. CONCLUSIONS: The additional mTOR blockade provided by BEZ235 in combined blockade resulted in increased anticancer effect. The hypersensitivity of ER cell lines to additional mTOR blockade suggested PAM pathway oncogenic dependence via mTOR. Dual downstream combined blockade of MAPK and PAM pathways with MEK and PI3K/mTOR inhibitor appeared most effective and represents an attractive therapeutic strategy against pancreatic cancer and its associated drug resistance.


Asunto(s)
Antineoplásicos/farmacología , Carcinoma Ductal Pancreático/tratamiento farmacológico , Clorhidrato de Erlotinib/farmacología , Proteínas Quinasas Activadas por Mitógenos/antagonistas & inhibidores , Neoplasias Pancreáticas/tratamiento farmacológico , Inhibidores de las Quinasa Fosfoinosítidos-3 , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Apoptosis/efectos de los fármacos , Carcinoma Ductal Pancreático/patología , Puntos de Control del Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Resistencia a Antineoplásicos , Sinergismo Farmacológico , Flavonoides/farmacología , Humanos , Imidazoles/farmacología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Neoplasias Pancreáticas/patología , Quinolinas/farmacología , Tiazoles/farmacología
18.
Breast Cancer Res Treat ; 155(2): 203-13, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26740212

RESUMEN

FXYD3, also known as mammary tumor protein 8, is overexpressed in several common cancers, including in many breast cancers. We examined if such overexpression might protect Na(+)/K(+)-ATPase and cancer cells against the high levels of oxidative stress characteristic of many tumors and often induced by cancer treatments. We measured FXYD3 expression, Na(+)/K(+)-ATPase activity and glutathionylation of the ß1 subunit of Na(+)/K(+)-ATPase, a reversible oxidative modification that inhibits the ATPase, in MCF-7 and MDA-MB-468 cells. Expression of FXYD3 was suppressed by transfection with FXYD3 siRNA. A colorimetric end-point assay was used to estimate cell viability. Apoptosis was estimated by caspase 3/7 (DEVDase) activation using a Caspase fluorogenic substrate kit. Expression of FXYD3 in MCF-7 breast cancer cells was ~eightfold and ~twofold higher than in non-cancer MCF-10A cells and MDA-MB-468 cancer cells, respectively. A ~50 % reduction in FXYD3 expression increased glutathionylation of the ß1 Na(+)/K(+)-ATPase subunit and reduced Na(+)/K(+)-ATPase activity by ~50 %, consistent with the role of FXYD3 to facilitate reversal of glutathionylation of the ß1 subunit of Na(+)/K(+)-ATPase and glutathionylation-induced inhibition of Na(+)/K(+)-ATPase. Treatment of MCF-7 and MDA-MB- 468 cells with doxorubicin or γ-radiation decreased cell viability and induced apoptosis. The treatments upregulated FXYD3 expression in MCF-7 but not in MDA-MB-468 cells and suppression of FXYD3 in MCF-7 but not in MDA-MB-468 cells amplified effects of treatments on Na(+)/K(+)-ATPase activity and treatment-induced cell death and apoptosis. Overexpression of FXYD3 may be a marker of resistance to cancer treatments and a potentially important therapeutic target.


Asunto(s)
Neoplasias de la Mama/genética , Supervivencia Celular/genética , Doxorrubicina/farmacología , Rayos gamma/uso terapéutico , Silenciador del Gen/efectos de los fármacos , Proteínas de la Membrana/genética , Proteínas de Neoplasias/genética , ATPasa Intercambiadora de Sodio-Potasio/genética , Apoptosis/efectos de los fármacos , Apoptosis/efectos de la radiación , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/radioterapia , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/efectos de la radiación , Femenino , Expresión Génica/efectos de los fármacos , Expresión Génica/efectos de la radiación , Humanos , Células MCF-7
19.
Oncotarget ; 6(29): 26583-98, 2015 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-26378048

RESUMEN

Chemotherapy drugs that induce apoptosis by causing DNA double-strand breaks, upregulate the tumor suppressor p53. This study investigated the regulation of the growth-regulatory protein insulin-like growth factor binding protein-3 (IGFBP-3), a p53 target, by DNA-damaging agents in breast cancer cells. IGFBP-3 was upregulated 1.4- to 13-fold in response to doxorubicin and etoposide in MCF-10A, Hs578T, MCF-7 and T47D cells, which express low to moderate basal levels of IGFBP-3. In contrast, IGFBP-3 was strongly downregulated by these agents in cells with high basal levels of IGFBP-3 (MDA-MB-231, MDA-MB-436 and MDA-MB-468). In MDA-MB-468 cells containing the R273H p53 mutation, reported to display gain-of-function properties, chemotherapy-induced suppression of IGFBP-3 was not reversed by the p53 reactivating drug, PRIMA-1, or by p53 silencing, suggesting that the decrease in IGFBP-3 following DNA damage is not a mutant p53 gain-of-function response. SiRNA-mediated downregulation of endogenous IGFBP-3 modestly attenuated doxorubicin-induced apoptosis in MDA-MB-468 and Hs578T cells. IGFBP-3 downregulation in some breast cancer cell lines in response to DNA-damaging chemotherapy may have clinical implications because suppression of IGFBP-3 may modulate the apoptotic response. These observations provide further evidence that endogenous IGFBP-3 plays a role in breast cancer cell responsiveness to DNA damaging therapy.


Asunto(s)
Neoplasias de la Mama/metabolismo , Daño del ADN , Regulación Neoplásica de la Expresión Génica , Proteína 3 de Unión a Factor de Crecimiento Similar a la Insulina/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Antineoplásicos/química , Apoptosis , Neoplasias de la Mama/genética , Caspasa 3/metabolismo , Línea Celular Tumoral , Doxorrubicina/química , Etopósido/química , Femenino , Silenciador del Gen , Humanos , Proteínas de la Membrana/metabolismo , Mutación , Proteínas del Tejido Nervioso/metabolismo , ARN Interferente Pequeño/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa
20.
Cancer Lett ; 368(1): 64-70, 2015 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-26276712

RESUMEN

The calcium-binding protein S100P is overexpressed in various cancers and may contribute to the oncogenic phenotype. This study used mass spectrometry to characterize a novel 9.2-kDa C-terminally truncated form of S100P (t-S100P), and to investigate its potential prognostic value in breast cancer. Univariate analysis demonstrated the association between breast tissue t-S100P levels (n = 148) and conventional pathological markers. Across all tumor samples, high t-S100P was strongly prognostic for poor disease-free survival (P = 0.005), its efficacy confined to lymph node-positive tumors (n = 74, P = 0.007). Matrix-assisted laser desorption/ionization imaging mass spectrometry confirmed differential t-S100P abundance between breast cancer and unaffected adjacent tissue. t-S100P was exclusively located in the cell nucleus of breast cancer tissue, and full-length S100P was essentially undetectable by mass spectrometry. We conclude that t-S100P is the predominant form of S100P in breast cancer tissue and is strongly prognostic for disease-free survival in women with lymph node-positive disease.


Asunto(s)
Biomarcadores de Tumor/análisis , Neoplasias de la Mama/química , Proteínas de Unión al Calcio/análisis , Proteínas de Neoplasias/análisis , Fragmentos de Péptidos/análisis , Adulto , Anciano , Anciano de 80 o más Años , Neoplasias de la Mama/mortalidad , Neoplasias de la Mama/patología , Neoplasias de la Mama/terapia , Núcleo Celular/química , Supervivencia sin Enfermedad , Femenino , Humanos , Inmunohistoquímica , Estimación de Kaplan-Meier , Metástasis Linfática , Persona de Mediana Edad , Valor Predictivo de las Pruebas , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Factores de Tiempo , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...