Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Cell Biochem ; 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38779967

RESUMEN

The chromodomain helicase DNA-binding (CHD) and chromobox (CBX) families of proteins play crucial roles in cell fate decisions, differentiation, and cell proliferation in a broad variety of tissues and cell types. CHD proteins are ATP-dependent epigenetic enzymes actively engaged in transcriptional regulation, DNA replication, and DNA damage repair, whereas CBX proteins are transcriptional repressors mainly involved in the formation of heterochromatin. The pleiotropic effects of CHD and CBX proteins are largely dependent on their versatility to interact with other key components of the epigenetic and transcriptional machinery. Although the function and regulatory modes of CHD and CBX factors are well established in many cell types, little is known about their roles during osteogenic differentiation. A single-cell RNA-sequencing analysis of the mouse incisor dental pulp revealed distinct spatiotemporal expression patterns of CHD- and CBX-encoding genes within different clusters of mesenchymal stromal cells (MSCs) representing various stages of osteogenic differentiation. Additionally, genes encoding interaction partners of CHD and CBX proteins, such as subunits of the trithorax-COMPASS and polycomb chromatin remodeling complexes, exhibited differential co-expression behaviors within MSC subpopulations. Thus, CHD- and CBX-encoding genes show partially overlapping but distinct expression patterns in MSCs, suggesting their differential roles in osteogenic cell fate decisions.

2.
Cleft Palate Craniofac J ; : 10556656231172296, 2023 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-37161276

RESUMEN

OBJECTIVE: Significant evidence links epigenetic processes governing the dynamics of DNA methylation and demethylation to an increased risk of syndromic and nonsyndromic cleft lip and/or cleft palate (CL/P). Previously, we characterized mesenchymal stem/stromal cells (MSCs) at different stages of osteogenic differentiation in the mouse incisor dental pulp. The main objective of this research was to characterize the transcriptional landscape of regulatory genes associated with DNA methylation and demethylation at a single-cell resolution. DESIGN: We used single-cell RNA sequencing (scRNA-seq) data to characterize transcriptome in individual subpopulations of MSCs in the mouse incisor dental pulp. SETTINGS: The biomedical research institution. PATIENTS/PARTICIPANTS: This study did not include patients. INTERVENTIONS: This study collected and analyzed data on the single-cell RNA expssion in the mouse incisor dental pulp. MAIN OUTCOME MEASURE(S): Molecular regulators of DNA methylation/demethylation exhibit differential transcriptional landscape in different subpopulations of osteogenic progenitor cells. RESULTS: scRNA-seq analysis revealed that genes encoding DNA methylation and demethylation enzymes (DNA methyltransferases and members of the ten-eleven translocation family of methylcytosine dioxygenases), methyl-DNA binding domain proteins, as well as transcription factors and chromatin remodeling proteins that cooperate with DNA methylation machinery are differentially expressed within distinct subpopulations of MSCs that undergo different stages of osteogenic differentiation. CONCLUSIONS: These findings suggest some mechanistic insights into a potential link between epigenetic alterations and multifactorial causes of CL/P phenotypes.

3.
Int J Dev Biol ; 67(1): 19-25, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37078362

RESUMEN

SOX transcription factors play key roles in cell differentiation and cell fate determination during development. Using single-cell RNA-sequencing data, we examined the expression profiles of Sox genes in the mouse incisor dental pulp. Our analysis showed that Sox4, Sox5, Sox9, Sox11, and Sox12 are mainly expressed in mesenchymal stem/stromal cells (MSCs) representing osteogenic cells at different stages of differentiation. We found that in several MSCs, Sox genes co-expressed with regulatory genes such as Sp7, Satb2, Msx1, Snai2, Dlx1, Twist2, and Tfap2a. In addition, Sox family genes colocalized with Runx2 and Lef1, which are highly enriched in MSCs undergoing osteoblast differentiation. A protein interaction network analysis uncovered that CREBBP, CEBPB, TLE1, TWIST1, and members of the HDAC and SMAD families are interacting partners of RUNX2 and LEF1 during skeletal development. Collectively, the distinct expression patterns of the SOX transcription factors suggest that they play essential regulatory roles in directing lineage-specific gene expression during differentiation of MSCs.


Asunto(s)
Subunidad alfa 1 del Factor de Unión al Sitio Principal , Incisivo , Ratones , Animales , Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , Incisivo/metabolismo , Pulpa Dental/metabolismo , Factores de Transcripción/metabolismo , Perfilación de la Expresión Génica , Diferenciación Celular/genética , Factores de Transcripción SOX/genética , Factores de Transcripción SOX/metabolismo , Transcriptoma
4.
Front Immunol ; 14: 1067459, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36756127

RESUMEN

The ubiquitously expressed transcription factor TFII-I is a multifunctional protein with pleiotropic roles in gene regulation. TFII-I associated polymorphisms are implicated in Sjögren's syndrome and Lupus in humans and, germline deletion of the Gtf2i gene in mice leads to embryonic lethality. Here we report a unique role for TFII-I in homeostasis of innate properties of B lymphocytes. Loss of Gtf2i in murine B lineage cells leads to an alteration in transcriptome, chromatin landscape and associated transcription factor binding sites, which exhibits myeloid-like features and coincides with enhanced sensitivity to LPS induced gene expression. TFII-I deficient B cells also show increased switching to IgG3, a phenotype associated with inflammation. These results demonstrate a role for TFII-I in maintaining immune homeostasis and provide clues for GTF2I polymorphisms associated with B cell dominated autoimmune diseases in humans.


Asunto(s)
Síndrome de Sjögren , Factores de Transcripción TFIII , Factores de Transcripción TFII , Humanos , Ratones , Animales , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Cromatina , Unión Proteica , Factores de Transcripción TFIII/genética , Factores de Transcripción TFIII/metabolismo , Factores de Transcripción TFII/genética , Factores de Transcripción TFII/metabolismo
5.
Stem Cells Int ; 2022: 4969441, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35992033

RESUMEN

Objectives. Kabuki syndrome (KS) is a rare genetic disorder characterized by developmental delay, retarded growth, and cardiac, gastrointestinal, neurocognitive, renal, craniofacial, dental, and skeletal defects. KS is caused by mutations in the genes encoding histone H3 lysine 4 methyltransferase (KMT2D) and histone H3 lysine 27 demethylase (KDM6A), which are core components of the complex of proteins associated with histone H3 lysine 4 methyltransferase SET1 (SET1/COMPASS). Using single-cell RNA data, we examined the expression profiles of Kmt2d and Kdm6a in the mouse dental pulp. In the incisor pulp, Kmt2d and Kdm6a colocalize with other genes of the SET1/COMPASS complex comprised of the WD-repeat protein 5 gene (Wdr5), the retinoblastoma-binding protein 5 gene (Rbbp5), absent, small, and homeotic 2-like protein-encoding gene (Ash2l), nuclear receptor cofactor 6 gene (Ncoa6), and Pax-interacting protein 1 gene (Ptip1). In addition, we found that Kmt2d and Kdm6a coexpress with the downstream target genes of the Wingless and Integrated (WNT) and sonic hedgehog signaling pathways in mesenchymal stem/stromal cells (MSCs) at different stages of osteogenic differentiation. Taken together, our results suggest an essential role of KMT2D and KDK6A in directing lineage-specific gene expression during differentiation of MSCs.

6.
Acta Biochim Pol ; 69(1): 131-138, 2022 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-35226446

RESUMEN

The dental pulp is a promising source of progenitor cells for regenerative medicine. The natural function of dental pulp is to produce odontoblasts to generate reparative dentin. Stem cells within the pulp tissue originate from the migrating neural crest cells and possess mesenchymal stem cell properties with the ability to differentiate into multiple lineages. To elucidate the transcriptional control mechanisms underlying cell fate determination, we compared the transcriptome and chromatin accessibility in primary dental pulp tissue derived from 5-6-day-old mice. Using RNA sequencing and assay for transposase-accessible chromatin using sequencing (ATAC-seq), we correlated gene expression with chromatin accessibility. We found that the majority of ATAC-seq peaks were concentrated at genes associated with development and cell differentiation. Most of these genes were highly expressed in the mouse dental pulp. Surprisingly, we uncovered a group of genes encoding master transcription factors that were not expressed in the dental pulp but retained open chromatin states. Within this group, we identified key developmental genes important for specification of the neural crest, adipocyte, neural, myoblast, osteoblast and hepatocyte lineages. Collectively, our results uncover a complex relationship between gene expression and the chromatin accessibility landscape in the mouse dental pulp.


Asunto(s)
Cromatina/genética , Pulpa Dental/metabolismo , Incisivo/metabolismo , Células Madre Mesenquimatosas/metabolismo , Adipocitos/metabolismo , Animales , Diferenciación Celular , Cromatina/metabolismo , Secuenciación de Inmunoprecipitación de Cromatina/métodos , Expresión Génica , Ratones , Odontoblastos/metabolismo , Medicina Regenerativa/métodos , Células Madre/metabolismo , Factores de Transcripción/metabolismo
7.
Int J Dev Biol ; 66(7-8-9): 391-400, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36942693

RESUMEN

Although histone methyltransferases are implicated in many key developmental processes, the contribution of individual chromatin modifiers in dental tissues is not well understood. Using single-cell RNA sequencing, we examined the expression profiles of the disruptor of telomeric silencing 1-like (Dot1L) gene in the postnatal day 5 mouse molar dental pulp. Dot1L is the only known enzyme that methylates histone 3 on lysine 79, a modification associated with gene expression. Our research revealed 15 distinct clusters representing different populations of mesenchymal stromal cells (MSCs), immune cells, pericytes, ameloblasts and endothelial cells. We documented heterogeneity in gene expression across different subpopulations of MSCs, a good indicator that these stromal progenitors undergo different phases of osteogenic differentiation. Interestingly, although Dot1L was broadly expressed across all cell clusters within the molar dental pulp, our analyses indicated specific enrichment of Dot1L within two clusters of MSCs, as well as cell clusters characterized as ameloblasts and endothelial cells. Moreover, we detected Dot1L co-expression with protein interactors involved in epigenetic activation such as Setd2, Sirt1, Brd4, Isw1, Bptf and Suv39h1. In addition, Dot1L was co-expressed with Eed2, Cbx3 and Dnmt1, which encode epigenetic factors associated with gene silencing and heterochromatin formation. Dot1l was co-expressed with downstream targets of the insulin growth factor and WNT signaling pathways, as well as genes involved in cell cycle progression. Collectively, our results suggest that Dot1L may play key roles in orchestrating lineage-specific gene expression during MSC differentiation.


Asunto(s)
Metiltransferasas , Factores de Transcripción , Animales , Ratones , Metiltransferasas/genética , Metiltransferasas/metabolismo , Factores de Transcripción/genética , Transcriptoma , Pulpa Dental/metabolismo , Células Endoteliales , Proteínas Nucleares/metabolismo , Osteogénesis , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo
8.
J Biochem ; 171(1): 123-129, 2022 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-34676418

RESUMEN

The dental pulp is critical for the production of odontoblasts to create reparative dentin. In recent years, dental pulp has become a promising source of mesenchymal stem cells that are capable of differentiating into multiple cell types. To elucidate the transcriptional control mechanisms specifying the early phases of odontoblast differentiation, we analysed the DNA demethylation pattern associated with 5-hydroxymethylcytosine (5hmC) in the primary murine dental pulp. 5hmC plays an important role in chromatin accessibility and transcriptional control by modelling a dynamic equilibrium between DNA methylation and demethylation. Our research revealed 5hmC enrichment along genes and non-coding regulatory regions associated with specific developmental pathways in the genome of mouse incisor and molar dental pulp. Although the overall distribution of 5hmC is similar, the intensity and location of the 5hmC peaks significantly differs between the incisor and molar pulp genome, indicating cell type-specific epigenetic variations. Our study suggests that the differential DNA demethylation pattern could account for the distinct regulatory mechanisms underlying the tooth-specific ontogenetic programs.


Asunto(s)
Pulpa Dental , Incisivo , Animales , Diferenciación Celular , Genoma , Ratones , Odontoblastos
9.
Gene Expr Patterns ; 43: 119228, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34915194

RESUMEN

The dental pulp is known to be highly heterogenous, comprising distinct cell types including mesenchymal stromal cells (MSCs), which represent neural-crest-derived cells with the ability to differentiate into multiple cell lineages. However, the cellular heterogeneity and the transcriptome signature of different cell clusters within the dental pulp remain to be established. To better understand discrete cell types, we applied a single-cell RNA sequencing strategy to establish the RNA expression profiles of individual dental pulp cells from 5- to 6-day-old mouse incisors. Our study revealed distinct subclasses of cells representing osteoblast, odontoblast, endothelial, pancreatic, neuronal, immune, pericyte and ameloblast lineages. Collectively, our research demonstrates the complexity and diversity of cell subclasses within the incisor dental pulp, thus providing a foundation for uncovering the molecular processes that govern cell fate decisions and lineage commitment in dental pulp-derived MSCs.


Asunto(s)
Incisivo , Células Madre Mesenquimatosas , Animales , Diferenciación Celular , Pulpa Dental , Perfilación de la Expresión Génica , Células Madre Mesenquimatosas/metabolismo , Ratones , Transcriptoma
10.
Bone ; 142: 115677, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33022452

RESUMEN

Chromatin modifying enzymes play essential roles in skeletal development and bone maintenance, and deregulation of epigenetic mechanisms can lead to skeletal growth and malformation disorders. Here, we report a novel skeletal dysplasia phenotype in mice with conditional loss of Disruptor of telomeric silencing 1-like (Dot1L) histone methyltransferase in limb mesenchymal progenitors and downstream descendants. Phenotypic characterizations of mice with Dot1L inactivation by Prrx1-Cre (Dot1L-cKOPrrx1) revealed limb shortening, abnormal bone morphologies, and forelimb dislocations. Our in vivo and in vitro data support a crucial role for Dot1L in regulating growth plate chondrocyte proliferation and differentiation, extracellular matrix production, and secondary ossification center formation. Micro-computed tomography analysis of femurs revealed that partial loss of Dot1L expression is sufficient to impair trabecular bone formation and microarchitecture in young mice. Moreover, RNAseq analysis of Dot1L deficient chondrocytes implicated Dot1L in the regulation of key genes and pathways necessary to promote cell cycle regulation and skeletal growth. Collectively, our data show that early expression of Dot1L in limb mesenchyme provides essential regulatory control of endochondral bone morphology, growth, and stability.


Asunto(s)
Condrocitos , Mesodermo , Animales , Histona Metiltransferasas , N-Metiltransferasa de Histona-Lisina/genética , Ratones , Fenotipo , Microtomografía por Rayos X
12.
Nat Neurosci ; 22(5): 700-708, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-31011227

RESUMEN

Williams syndrome (WS), caused by a heterozygous microdeletion on chromosome 7q11.23, is a neurodevelopmental disorder characterized by hypersociability and neurocognitive abnormalities. Of the deleted genes, general transcription factor IIi (Gtf2i) has been linked to hypersociability in WS, although the underlying mechanisms are poorly understood. We show that selective deletion of Gtf2i in the excitatory neurons of the forebrain caused neuroanatomical defects, fine motor deficits, increased sociability and anxiety. Unexpectedly, 70% of the genes with significantly decreased messenger RNA levels in the mutant mouse cortex are involved in myelination, and mutant mice had reduced mature oligodendrocyte cell numbers, reduced myelin thickness and impaired axonal conductivity. Restoring myelination properties with clemastine or increasing axonal conductivity rescued the behavioral deficits. The frontal cortex from patients with WS similarly showed reduced myelin thickness, mature oligodendrocyte cell numbers and mRNA levels of myelination-related genes. Our study provides molecular and cellular evidence for myelination deficits in WS linked to neuronal deletion of Gtf2i.


Asunto(s)
Conducta Animal , Vaina de Mielina/metabolismo , Neuronas/metabolismo , Prosencéfalo/metabolismo , Remielinización/efectos de los fármacos , Factores de Transcripción TFII/genética , Síndrome de Williams/genética , Animales , Axones/efectos de los fármacos , Clemastina/administración & dosificación , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos , Destreza Motora , Vaina de Mielina/ultraestructura , Conducta Social , Transcriptoma
14.
Cleft Palate Craniofac J ; 55(6): 865-870, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-28085512

RESUMEN

OBJECTIVES: The aim of this study is to define the candidate target genes for TFII-I and AP2α regulation in neural crest progenitor cells. DESIGN: The GTF2I and GTF2IRD1 genes encoding the TFII-I family of transcription factors are prime candidates for the Williams-Beuren syndrome, a complex multisystem disorder characterized by craniofacial, skeletal, and neurocognitive deficiencies. AP2α, a product of the TFAP2A gene, is a master regulator of neural crest cell lineage. Mutations in TFAP2A cause branchio-oculo-facial syndrome characterized by dysmorphic facial features and orofacial clefts. In this study, we examined the genome-wide promoter occupancy of TFII-I and AP2α in neural crest progenitor cells derived from in vitro-differentiated human embryonic stem cells. RESULTS: Our study revealed that TFII-I and AP2α co-occupy a selective set of genes that control the specification of neural crest cells. CONCLUSIONS: The data suggest that TFII-I and AP2α may coordinately control the expression of genes encoding chromatin-modifying proteins, epigenetic enzymes, transcription factors, and signaling proteins.


Asunto(s)
Síndrome Branquio Oto Renal/genética , Factor de Transcripción AP-2/genética , Factores de Transcripción TFII/genética , Síndrome de Williams/genética , Células Cultivadas , Regulación del Desarrollo de la Expresión Génica , Humanos , Mutación , Cresta Neural/fisiología , Regiones Promotoras Genéticas , Células Madre/fisiología
15.
Yale J Biol Med ; 90(1): 63-71, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28356894

RESUMEN

Recent progress in epigenetic research has made a profound influence on pharmacoepigenomics, one of the fastest growing disciplines promising to provide new epi-drugs for the treatment of a broad range of diseases. Histone acetylation is among the most essential chromatin modifications underlying the dynamics of transcriptional activation. The acetylated genomic regions recruit the BET (bromodomain and extra-terminal) family of bromodomains (BRDs), thereby serving as a molecular scaffold in establishing RNA polymerase II specificity. Over the past several years, the BET epigenetic readers have become the main targets for drug therapy. The discovery of selective small-molecule compounds with capacity to inhibit BET proteins has paved a path for developing novel strategies against cancer, cardiovascular, skeletal, and inflammatory diseases. Therefore, further research into small chemicals impeding the regulatory activity of BRDs could offer therapeutic benefits for many health problems including tumor growth, heart disease, oral, and bone disorders.


Asunto(s)
Epigénesis Genética/genética , Histonas/metabolismo , Acetilación , Animales , Humanos , ARN Polimerasa II/metabolismo
16.
Yale J Biol Med ; 89(4): 539-563, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-28018144

RESUMEN

A close cooperation between chromatin states, transcriptional modulation, and epigenetic modifications is required for establishing appropriate regulatory circuits underlying self-renewal and differentiation of adult and embryonic stem cells. A growing body of research has established that the epigenome topology provides a structural framework for engaging genes in the non-random chromosomal interactions to orchestrate complex processes such as cell-matrix interactions, cell adhesion and cell migration during lineage commitment. Over the past few years, the functional dissection of the epigenetic landscape has become increasingly important for understanding gene expression dynamics in stem cells naturally found in most tissues. Adult stem cells of the human dental pulp hold great promise for tissue engineering, particularly in the skeletal and tooth regenerative medicine. It is therefore likely that progress towards pulp regeneration will have a substantial impact on the clinical research. This review summarizes the current state of knowledge regarding epigenetic cues that have evolved to regulate the pluripotent differentiation potential of embryonic stem cells and the lineage determination of developing dental pulp progenitors.


Asunto(s)
Pulpa Dental/citología , Células Madre Embrionarias/citología , Epigénesis Genética/genética , Animales , Diferenciación Celular/genética , Diferenciación Celular/fisiología , Metilación de ADN/genética , Histonas/metabolismo , Humanos , ARN no Traducido/genética , ARN no Traducido/fisiología
18.
Genesis ; 54(7): 407-12, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27194223

RESUMEN

The multifunctional transcription factor TFII-I encoded by the Gtf2i gene is expressed at the two-cell stage, inner cell mass, trophectoderm, and early gastrula stages of the mouse embryo. In embryonic stem cells, TFII-I colocalizes with bivalent domains and depletion of Gtf2i causes embryonic lethality, neural tube closure, and craniofacial defects. To gain insight into the function of TFII-I during late embryonic and postnatal stages, we have generated a conditional Gtf2i null allele by flanking exon 3 with loxP sites. Crossing the floxed line with the Hprt-Cre transgenic mice resulted in inactivation of Gtf2i in one-cell embryo. The Cre-mediated deletion of exon 3 recapitulates a genetic null phenotype, indicating that the conditional Gtf2i line is a valuable tool for studying TFII-I function during embryonic development. genesis 54:407-412, 2016. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Desarrollo Embrionario/genética , Células Madre Embrionarias/metabolismo , Factores de Transcripción TFII/biosíntesis , Animales , Blastocisto/metabolismo , Embrión de Mamíferos , Exones , Regulación del Desarrollo de la Expresión Génica , Ratones , Ratones Transgénicos , Fenotipo , Factores de Transcripción TFII/genética
19.
Curr Opin Clin Nutr Metab Care ; 19(4): 263-9, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27116713

RESUMEN

PURPOSE OF REVIEW: The activation of inflammatory response is dependent upon genetic factors and epigenetic control mechanisms. This overview will highlight recent advances in the understanding of epigenetic dynamics during cellular inflammation. RECENT FINDINGS: There is a growing body of evidence indicating that alterations of the chromatin state associate with an increased risk of chronic disease development and inflammation. Epigenetic alterations respond rapidly to environmental changes and have a profound effect on gene regulatory cross-wirings and transcriptional regulation. SUMMARY: Systematic dissection of the mechanisms underlying epigenetic effects during inflammatory response is a critical step toward elucidation of the cell's molecular processes and holds potential for the development of novel therapies for the treatment of chronic diseases.


Asunto(s)
Antiinflamatorios no Esteroideos/uso terapéutico , Enfermedad Crónica/tratamiento farmacológico , Metilación de ADN , Epigénesis Genética/efectos de los fármacos , Histonas/metabolismo , Enfermedades del Sistema Inmune/tratamiento farmacológico , Procesamiento Proteico-Postraduccional , Acetilación/efectos de los fármacos , Animales , Metilación de ADN/efectos de los fármacos , Desmetilación/efectos de los fármacos , Inhibidores de Histona Desacetilasas/uso terapéutico , Humanos , Enfermedades del Sistema Inmune/inmunología , Enfermedades del Sistema Inmune/metabolismo , Inmunidad Innata/efectos de los fármacos , Metilación/efectos de los fármacos , Procesamiento Proteico-Postraduccional/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...