Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38352415

RESUMEN

Synaptic plasticities, such as long-term potentiation (LTP) and depression (LTD), tune synaptic efficacy and are essential for learning and memory. Current studies of synaptic plasticity in humans are limited by a lack of adequate human models. Here, we modeled the thalamocortical system by fusing human induced pluripotent stem cell-derived thalamic and cortical organoids. Single-nucleus RNA-sequencing revealed that most cells in mature thalamic organoids were glutamatergic neurons. When fused to form thalamocortical assembloids, thalamic and cortical organoids formed reciprocal long-range axonal projections and reciprocal synapses detectable by light and electron microscopy, respectively. Using whole-cell patch-clamp electrophysiology and two-photon imaging, we characterized glutamatergic synaptic transmission. Thalamocortical and corticothalamic synapses displayed short-term plasticity analogous to that in animal models. LTP and LTD were reliably induced at both synapses; however, their mechanisms differed from those previously described in rodents. Thus, thalamocortical assembloids provide a model system for exploring synaptic plasticity in human circuits.

2.
Cell Rep ; 43(2): 113758, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38358887

RESUMEN

Meaningful auditory memories are formed in adults when acoustic information is delivered to the auditory cortex during heightened states of attention, vigilance, or alertness, as mediated by neuromodulatory circuits. Here, we identify that, in awake mice, acoustic stimulation triggers auditory thalamocortical projections to release adenosine, which prevents cortical plasticity (i.e., selective expansion of neural representation of behaviorally relevant acoustic stimuli) and perceptual learning (i.e., experience-dependent improvement in frequency discrimination ability). This sound-evoked adenosine release (SEAR) becomes reduced within seconds when acoustic stimuli are tightly paired with the activation of neuromodulatory (cholinergic or dopaminergic) circuits or periods of attentive wakefulness. If thalamic adenosine production is enhanced, then SEAR elevates further, the neuromodulatory circuits are unable to sufficiently reduce SEAR, and associative cortical plasticity and perceptual learning are blocked. This suggests that transient low-adenosine periods triggered by neuromodulatory circuits permit associative cortical plasticity and auditory perceptual learning in adults to occur.


Asunto(s)
Corteza Auditiva , Animales , Ratones , Corteza Auditiva/fisiología , Adenosina , Aprendizaje/fisiología , Estimulación Acústica , Sonido
3.
Cell Rep ; 19(8): 1532-1544, 2017 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-28538174

RESUMEN

Individuals with 22q11.2 deletion syndrome (22q11DS) are at high risk of developing psychiatric diseases such as schizophrenia. Individuals with 22q11DS and schizophrenia are impaired in emotional memory, anticipating, recalling, and assigning a correct context to emotions. The neuronal circuits responsible for these emotional memory deficits are unknown. Here, we show that 22q11DS mouse models have disrupted synaptic transmission at thalamic inputs to the lateral amygdala (thalamo-LA projections). This synaptic deficit is caused by haploinsufficiency of the 22q11DS gene Dgcr8, which is involved in microRNA processing, and is mediated by the increased dopamine receptor Drd2 levels in the thalamus and by reduced probability of glutamate release from thalamic inputs. This deficit in thalamo-LA synaptic transmission is sufficient to cause fear memory deficits. Our results suggest that dysregulation of the Dgcr8-Drd2 mechanism at thalamic inputs to the amygdala underlies emotional memory deficits in 22q11DS.


Asunto(s)
Amígdala del Cerebelo/fisiopatología , Deleción Cromosómica , Emociones , Memoria , MicroARNs/metabolismo , Esquizofrenia/genética , Esquizofrenia/fisiopatología , Tálamo/fisiopatología , Animales , Conducta Animal , Cromosomas de los Mamíferos/genética , Miedo , Técnicas de Silenciamiento del Gen , Glutamatos/metabolismo , Ratones , MicroARNs/genética , Neuronas/metabolismo , Proteínas de Unión al ARN/metabolismo , Receptores de Dopamina D2/metabolismo , Sinapsis/metabolismo , Transmisión Sináptica
4.
Nat Med ; 23(1): 39-48, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27892953

RESUMEN

Although 22q11.2 deletion syndrome (22q11DS) is associated with early-life behavioral abnormalities, affected individuals are also at high risk for the development of schizophrenia symptoms, including psychosis, later in life. Auditory thalamocortical (TC) projections recently emerged as a neural circuit that is specifically disrupted in mouse models of 22q11DS (hereafter referred to as 22q11DS mice), in which haploinsufficiency of the microRNA (miRNA)-processing-factor-encoding gene Dgcr8 results in the elevation of the dopamine receptor Drd2 in the auditory thalamus, an abnormal sensitivity of thalamocortical projections to antipsychotics, and an abnormal acoustic-startle response. Here we show that these auditory TC phenotypes have a delayed onset in 22q11DS mice and are associated with an age-dependent reduction of miR-338-3p, a miRNA that targets Drd2 and is enriched in the thalamus of both humans and mice. Replenishing depleted miR-338-3p in mature 22q11DS mice rescued the TC abnormalities, and deletion of Mir338 (which encodes miR-338-3p) or reduction of miR-338-3p expression mimicked the TC and behavioral deficits and eliminated the age dependence of these deficits. Therefore, miR-338-3p depletion is necessary and sufficient to disrupt auditory TC signaling in 22q11DS mice, and it may mediate the pathogenic mechanism of 22q11DS-related psychosis and control its late onset.


Asunto(s)
Corteza Auditiva/fisiopatología , Vías Auditivas/fisiopatología , Síndrome de DiGeorge/genética , MicroARNs/genética , Trastornos Psicóticos/genética , Tálamo/fisiopatología , Edad de Inicio , Animales , Antipsicóticos/farmacología , Corteza Auditiva/efectos de los fármacos , Corteza Auditiva/metabolismo , Vías Auditivas/efectos de los fármacos , Conducta Animal/efectos de los fármacos , Western Blotting , Síndrome de DiGeorge/fisiopatología , Síndrome de DiGeorge/psicología , Modelos Animales de Enfermedad , Potenciales Evocados Auditivos del Tronco Encefálico/efectos de los fármacos , Potenciales Evocados Auditivos del Tronco Encefálico/genética , Eliminación de Gen , Haploinsuficiencia , Humanos , Ratones , MicroARNs/metabolismo , Vías Nerviosas , Optogenética , Técnicas de Placa-Clamp , Fenotipo , Trastornos Psicóticos/fisiopatología , Trastornos Psicóticos/psicología , Proteínas de Unión al ARN/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptores de Dopamina D2/genética , Reflejo de Sobresalto , Esquizofrenia/metabolismo , Tálamo/efectos de los fármacos , Tálamo/metabolismo
5.
Science ; 344(6188): 1178-82, 2014 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-24904170

RESUMEN

Auditory hallucinations in schizophrenia are alleviated by antipsychotic agents that inhibit D2 dopamine receptors (Drd2s). The defective neural circuits and mechanisms of their sensitivity to antipsychotics are unknown. We identified a specific disruption of synaptic transmission at thalamocortical glutamatergic projections in the auditory cortex in murine models of schizophrenia-associated 22q11 deletion syndrome (22q11DS). This deficit is caused by an aberrant elevation of Drd2 in the thalamus, which renders 22q11DS thalamocortical projections sensitive to antipsychotics and causes a deficient acoustic startle response similar to that observed in schizophrenic patients. Haploinsufficiency of the microRNA-processing gene Dgcr8 is responsible for the Drd2 elevation and hypersensitivity of auditory thalamocortical projections to antipsychotics. This suggests that Dgcr8-microRNA-Drd2-dependent thalamocortical disruption is a pathogenic event underlying schizophrenia-associated psychosis.


Asunto(s)
Síndrome de Deleción 22q11/genética , Corteza Auditiva/metabolismo , Haploinsuficiencia , Proteínas de Unión al ARN/genética , Receptores de Dopamina D2/biosíntesis , Esquizofrenia/genética , Tálamo/metabolismo , Síndrome de Deleción 22q11/tratamiento farmacológico , Animales , Antipsicóticos/uso terapéutico , Modelos Animales de Enfermedad , Resistencia a Medicamentos/genética , Ratones , Ratones Mutantes , MicroARNs/metabolismo , Receptores de Dopamina D2/genética , Esquizofrenia/tratamiento farmacológico , Transmisión Sináptica/genética
6.
J Neurosci ; 33(48): 18940-50, 2013 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-24285899

RESUMEN

Brief sounds produce a period of suppressed responsiveness in the auditory cortex (ACx). This forward suppression can last for hundreds of milliseconds and might contribute to mechanisms of temporal separation of sounds and stimulus-specific adaptation. However, the mechanisms of forward suppression remain unknown. We used in vivo recordings of sound-evoked responses in the mouse ACx and whole-cell recordings, two-photon calcium imaging in presynaptic terminals, and two-photon glutamate uncaging in dendritic spines performed in brain slices to show that synaptic depression at thalamocortical (TC) projections contributes to forward suppression in the ACx. Paired-pulse synaptic depression at TC projections lasts for hundreds of milliseconds and is attributable to a switch between firing modes in thalamic neurons. Thalamic neurons respond to a brief depolarizing pulse with a burst of action potentials; however, within hundreds of milliseconds, the same pulse repeated again produces only a single action potential. This switch between firing modes depends on Ca(v)3.1 T-type calcium channels enriched in thalamic relay neurons. Pharmacologic inhibition or knockdown of Ca(v)3.1 T-type calcium channels in the auditory thalamus substantially reduces synaptic depression at TC projections and forward suppression in the ACx. These data suggest that Ca(v)3.1-dependent synaptic depression at TC projections contributes to mechanisms of forward suppression in the ACx.


Asunto(s)
Corteza Auditiva/fisiología , Canales de Calcio Tipo T/fisiología , Corteza Cerebral/fisiología , Vías Nerviosas/fisiología , Tálamo/fisiología , Animales , Fenómenos Electrofisiológicos/fisiología , Potenciales Evocados/fisiología , Potenciales Postsinápticos Excitadores/fisiología , Ácido Glutámico/metabolismo , Técnicas In Vitro , Ratones , Ratones Endogámicos C57BL , Técnicas de Placa-Clamp , Reacción en Cadena de la Polimerasa , Sinapsis/fisiología
7.
J Neurosci ; 33(17): 7345-57, 2013 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-23616541

RESUMEN

Cortical maps in sensory cortices are plastic, changing in response to sensory experience. The cellular site of such plasticity is currently debated. Thalamocortical (TC) projections deliver sensory information to sensory cortices. TC synapses are currently dismissed as a locus of cortical map plasticity because TC synaptic plasticity is thought to be limited to neonates, whereas cortical map plasticity can be induced in both neonates and adults. However, in the auditory cortex (ACx) of adults, cortical map plasticity can be induced if animals attend to a sound or receive sounds paired with activation of cholinergic inputs from the nucleus basalis. We now show that, in the ACx, long-term potentiation (LTP), a major form of synaptic plasticity, is expressed at TC synapses in both young and mature mice but becomes gated with age. Using single-cell electrophysiology, two-photon glutamate uncaging, and optogenetics in TC slices containing the auditory thalamus and ACx, we show that TC LTP is expressed postsynaptically and depends on group I metabotropic glutamate receptors. TC LTP in mature ACx can be unmasked by cortical disinhibition combined with activation of cholinergic inputs from the nucleus basalis. Cholinergic inputs passing through the thalamic radiation activate M1 muscarinic receptors on TC projections and sustain glutamate release at TC synapses via negative regulation of presynaptic adenosine signaling through A1 adenosine receptors. These data indicate that TC LTP in the ACx persists throughout life and therefore can potentially contribute to experience-dependent cortical map plasticity in the ACx in both young and adult animals.


Asunto(s)
Corteza Auditiva/fisiología , Período Crítico Psicológico , Potenciación a Largo Plazo/fisiología , Plasticidad Neuronal/fisiología , Tálamo/fisiología , Factores de Edad , Animales , Animales Recién Nacidos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Técnicas de Cultivo de Órganos
8.
Development ; 139(18): 3422-31, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22874917

RESUMEN

Neuronal precursors, generated throughout life in the subventricular zone, migrate through the rostral migratory stream to the olfactory bulb where they differentiate into interneurons. We found that the PI3K-Akt-mTorc1 pathway is selectively inactivated in migrating neuroblasts in the subventricular zone and rostral migratory stream, and activated when these cells reach the olfactory bulb. Postnatal deletion of Pten caused aberrant activation of the PI3K-Akt-mTorc1 pathway and an enlarged subventricular zone and rostral migratory stream. This expansion was caused by premature termination of migration and differentiation of neuroblasts and was rescued by inhibition of mTorc1. This phenotype is reminiscent of lamination defects caused by Pten deletion in developing brain that were previously described as defective migration. However, live imaging in acute slices showed that Pten deletion did not cause a uniform defect in the mechanics of directional neuroblast migration. Instead, a subpopulation of Pten-null neuroblasts showed minimal movement and altered morphology associated with differentiation, whereas the remainder showed unimpeded directional migration towards the olfactory bulb. Therefore, migration defects of Pten-null neurons might be secondary to ectopic differentiation.


Asunto(s)
Diferenciación Celular/fisiología , Movimiento Celular/fisiología , Neuronas/citología , Fosfohidrolasa PTEN/metabolismo , Proteínas/metabolismo , Animales , Encéfalo/citología , Encéfalo/metabolismo , Diferenciación Celular/genética , Movimiento Celular/genética , Electroporación , Técnicas In Vitro , Diana Mecanicista del Complejo 1 de la Rapamicina , Ratones , Ratones Transgénicos , Complejos Multiproteicos , Neuronas/metabolismo , Fosfohidrolasa PTEN/genética , Proteínas/genética , Serina-Treonina Quinasas TOR
9.
J Physiol ; 590(4): 777-92, 2012 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-22147265

RESUMEN

The tumour suppressor PTEN is the central negative regulator of the phosphatidylinositol 3-kinase (PI3K) signalling pathway, which mediates diverse processes in various tissues. In the nervous system, the PI3K pathway modulates proliferation, migration, cellular size, synaptic transmission and plasticity. In humans, neurological abnormalities such as autism, seizures and ataxia are associated with inherited PTEN mutations. In rodents, Pten loss during early development is associated with extensive deficits in neuronal migration and substantial hypertrophy of neurons and synaptic densities; however, whether its effect on synaptic transmission and plasticity is direct or mediated by structural abnormalities remains unknown. Here we analysed neuronal and synaptic structures and function in Pten-conditional knockout mice in which the gene was deleted from excitatory neurons postnatally. Using two-photon imaging, Golgi staining, immunohistochemistry, electron microscopy, and electrophysiological tools, we determined that Pten loss does not affect hippocampus development, neuronal or synaptic structures, or basal excitatory synaptic transmission. However, it does cause deficits in both major forms of synaptic plasticity, long-term potentiation and long-term depression, of excitatory synaptic transmission. These deficits coincided with impaired spatial memory, as measured in water maze tasks. Deletion of Pdk1, which encodes a positive downstream regulator of the PI3K pathway, rescued Pten-mediated deficits in synaptic plasticity but not in spatial memory. These results suggest that PTEN independently modulates functional and structural properties of hippocampal neurons and is directly involved in mechanisms of synaptic plasticity.


Asunto(s)
Memoria/fisiología , Fosfohidrolasa PTEN/fisiología , Células Piramidales/fisiología , Sinapsis/fisiología , Transmisión Sináptica/fisiología , Animales , Región CA1 Hipocampal/fisiología , Movimiento Celular , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Serina-Treonina Quinasas/fisiología , Células Piramidales/citología , Células Piramidales/ultraestructura , Piruvato Deshidrogenasa Quinasa Acetil-Transferidora
10.
Proc Natl Acad Sci U S A ; 108(52): 21111-6, 2011 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-22160703

RESUMEN

Neuronal differentiation with respect to the acquisition of synaptic competence needs to be regulated precisely during neurogenesis to ensure proper formation of circuits at the right place and time in development. This regulation is particularly important for synaptic triads among photoreceptors, horizontal cells (HCs), and bipolar cells in the retina, because HCs are among the first cell types produced during development, and bipolar cells are among the last. HCs undergo a dramatic transition from vertically oriented neurites that form columnar arbors to overlapping laminar dendritic arbors with differentiation. However, how this process is regulated and coordinated with differentiation of photoreceptors and bipolar cells remains unknown. Previous studies have suggested that the retinoblastoma (Rb) tumor suppressor gene may play a role in horizontal cell differentiation and synaptogenesis. By combining genetic mosaic analysis of individual synaptic triads with neuroanatomic analyses and multiphoton live imaging of developing HCs, we found that Rb plays a cell-autonomous role in the reorganization of horizontal cell neurites as they differentiate. Aberrant vertical processes in Rb-deficient HCs form ectopic synapses with rods in the outer nuclear layer but lack bipolar dendrites. Although previous reports indicate that photoreceptor abnormalities can trigger formation of ectopic synapses, our studies now demonstrate that defects in a postsynaptic partner contribute to the formation of ectopic photoreceptor synapses in the mammalian retina.


Asunto(s)
Diferenciación Celular/fisiología , Dendritas/fisiología , Neurogénesis/fisiología , Células Horizontales de la Retina/citología , Proteína de Retinoblastoma/metabolismo , Sinapsis/fisiología , Animales , Ratones , Microscopía Confocal , Microscopía Electrónica de Transmisión , Proteína de Retinoblastoma/genética
11.
Nat Neurosci ; 15(1): 113-22, 2011 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-22158512

RESUMEN

Long-term synaptic enhancements in cortical and thalamic auditory inputs to the lateral nucleus of the amygdala (LAn) mediate encoding of conditioned fear memory. It is not known, however, whether the convergent auditory conditioned stimulus (CSa) pathways interact with each other to produce changes in their synaptic function. We found that continuous paired stimulation of thalamic and cortical auditory inputs to the LAn with the interstimulus delay approximately mimicking a temporal pattern of their activation in behaving animals during auditory fear conditioning resulted in persistent potentiation of synaptic transmission in the cortico-amygdala pathway in rat brain slices. This form of input timing-dependent plasticity (ITDP) in cortical input depends on inositol 1,4,5-trisphosphate (InsP(3))-sensitive Ca(2+) release from internal stores and postsynaptic Ca(2+) influx through calcium-permeable kainate receptors during its induction. ITDP in the auditory projections to the LAn, determined by characteristics of presynaptic activity patterns, may contribute to the encoding of the complex CSa.


Asunto(s)
Amígdala del Cerebelo/fisiología , Corteza Cerebral/fisiología , Plasticidad Neuronal/fisiología , Neuronas/fisiología , Tálamo/fisiología , Animales , Señalización del Calcio/fisiología , Potenciales Postsinápticos Excitadores/fisiología , Inositol 1,4,5-Trifosfato/metabolismo , Vías Nerviosas/fisiología , Ratas , Receptores de Ácido Kaínico/fisiología , Receptores de Glutamato Metabotrópico/fisiología , Sinapsis/fisiología , Transmisión Sináptica/fisiología
12.
J Neurosci ; 31(44): 16012-25, 2011 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-22049443

RESUMEN

Thalamocortical (TC) projections provide the major pathway for ascending sensory information to the mammalian neocortex. Arrays of these projections form synaptic inputs on thalamorecipient neurons, thus contributing to the formation of receptive fields (RFs) in sensory cortices. Experience-dependent plasticity of RFs persists throughout an organism's life span but in adults requires activation of cholinergic inputs to the cortex. In contrast, synaptic plasticity at TC projections is limited to the early postnatal period. This disconnect led to the widespread belief that TC synapses are the principal site of RF plasticity only in neonatal sensory cortices, but that they lose this plasticity upon maturation. Here, we tested an alternative hypothesis that mature TC projections do not lose synaptic plasticity but rather acquire gating mechanisms that prevent the induction of synaptic plasticity. Using whole-cell recordings and direct measures of postsynaptic and presynaptic activity (two-photon glutamate uncaging and two-photon imaging of the FM 1-43 assay, respectively) at individual synapses in acute mouse brain slices that contain the auditory thalamus and cortex, we determined that long-term depression (LTD) persists at mature TC synapses but is gated presynaptically. Cholinergic activation releases presynaptic gating through M(1) muscarinic receptors that downregulate adenosine inhibition of neurotransmitter release acting through A(1) adenosine receptors. Once presynaptic gating is released, mature TC synapses can express LTD postsynaptically through group I metabotropic glutamate receptors. These results indicate that synaptic plasticity at TC synapses is preserved throughout the life span and, therefore, may be a cellular substrate of RF plasticity in both neonate and mature animals.


Asunto(s)
Corteza Cerebral/citología , Depresión Sináptica a Largo Plazo/fisiología , Terminales Presinápticos/fisiología , Sinapsis/fisiología , Transmisión Sináptica/fisiología , Tálamo/citología , Animales , Estimulación Eléctrica , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/genética , Glutamatos/farmacología , Técnicas In Vitro , Indoles/farmacología , Activación del Canal Iónico/efectos de los fármacos , Activación del Canal Iónico/genética , Depresión Sináptica a Largo Plazo/efectos de los fármacos , Depresión Sináptica a Largo Plazo/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Técnicas de Placa-Clamp , Terminales Presinápticos/efectos de los fármacos , Compuestos de Piridinio/metabolismo , Compuestos de Amonio Cuaternario/metabolismo , Receptor de Adenosina A1/deficiencia , Transmisión Sináptica/genética
13.
J Neurosci ; 30(47): 15843-55, 2010 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-21106823

RESUMEN

The 22q11 deletion syndrome (22q11DS) is characterized by cognitive decline and increased risk of psychiatric disorders, mainly schizophrenia. The molecular mechanisms of neuronal dysfunction in cognitive symptoms of 22q11DS are poorly understood. Here, we report that a mouse model of 22q11DS, the Df(16)1/+ mouse, exhibits substantially enhanced short- and long-term synaptic plasticity at hippocampal CA3-CA1 synapses, which coincides with deficits in hippocampus-dependent spatial memory. These changes are evident in mature but not young animals. Electrophysiological, two-photon imaging and glutamate uncaging, and electron microscopic assays in acute brain slices showed that enhanced neurotransmitter release but not altered postsynaptic function or structure caused these changes. Enhanced neurotransmitter release in Df(16)1/+ mice coincided with altered calcium kinetics in CA3 presynaptic terminals and upregulated sarco(endo)plasmic reticulum calcium-ATPase type 2 (SERCA2). SERCA inhibitors rescued synaptic phenotypes of Df(16)1/+ mice. Thus, presynaptic SERCA2 upregulation may be a pathogenic event contributing to the cognitive symptoms of 22q11DS.


Asunto(s)
Síndrome de Deleción 22q11/genética , Síndrome de Deleción 22q11/fisiopatología , Calcio/metabolismo , Modelos Animales de Enfermedad , Plasticidad Neuronal/genética , Terminales Presinápticos/patología , Síndrome de Deleción 22q11/metabolismo , Animales , Femenino , Hipocampo/patología , Hipocampo/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Terminales Presinápticos/fisiología , Transmisión Sináptica/genética
14.
J Neurosci ; 29(20): 6406-17, 2009 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-19458212

RESUMEN

Despite being substantially outnumbered by intracortical inputs on thalamorecipient neurons, thalamocortical projections efficiently deliver acoustic information to the auditory cortex. We hypothesized that thalamic projections may achieve effectiveness by forming synapses at optimal locations on dendritic trees of cortical neurons. Using two-photon calcium imaging in dendritic spines, we constructed maps of active thalamic and intracortical inputs on dendritic trees of thalamorecipient cortical neurons in mouse thalamocortical slices. These maps revealed that thalamic projections synapse preferentially on stubby dendritic spines within 100 microm of the soma, whereas the locations and morphology of spines that receive intracortical projections have a less-defined pattern. Using two-photon photolysis of caged glutamate, we found that activation of stubby dendritic spines located perisomatically generated larger postsynaptic potentials in the soma of thalamorecipient neurons than did activation of remote dendritic spines or spines of other morphological types. These results suggest a novel mechanism of reliability of thalamic projections: the positioning of crucial afferent inputs at optimal synaptic locations.


Asunto(s)
Corteza Auditiva/citología , Mapeo Encefálico , Dendritas/fisiología , Células Receptoras Sensoriales/citología , 2-Amino-5-fosfonovalerato/farmacología , Animales , Calcio/metabolismo , Dendritas/ultraestructura , Espinas Dendríticas/clasificación , Espinas Dendríticas/efectos de los fármacos , Espinas Dendríticas/fisiología , Estimulación Eléctrica , Antagonistas de Aminoácidos Excitadores/farmacología , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/fisiología , Glutamatos/farmacología , Técnicas In Vitro , Masculino , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/fisiología , Ratones , Ratones Endogámicos C57BL , Red Nerviosa/fisiología , Vías Nerviosas/fisiología , Técnicas de Placa-Clamp/métodos , Células Receptoras Sensoriales/efectos de los fármacos , Potenciales Sinápticos/fisiología , Tálamo/citología
15.
Nature ; 457(7229): 603-7, 2009 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-19092805

RESUMEN

Cancer stem cells are remarkably similar to normal stem cells: both self-renew, are multipotent and express common surface markers, for example, prominin 1 (PROM1, also called CD133). What remains unclear is whether cancer stem cells are the direct progeny of mutated stem cells or more mature cells that reacquire stem cell properties during tumour formation. Answering this question will require knowledge of whether normal stem cells are susceptible to cancer-causing mutations; however, this has proved difficult to test because the identity of most adult tissue stem cells is not known. Here, using an inducible Cre, nuclear LacZ reporter allele knocked into the Prom1 locus (Prom1(C-L)), we show that Prom1 is expressed in a variety of developing and adult tissues. Lineage-tracing studies of adult Prom1(+/C-L) mice containing the Rosa26-YFP reporter allele showed that Prom1(+) cells are located at the base of crypts in the small intestine, co-express Lgr5 (ref. 2), generate the entire intestinal epithelium, and are therefore the small intestinal stem cell. Prom1 was reported recently to mark cancer stem cells of human intestinal tumours that arise frequently as a consequence of aberrant wingless (Wnt) signalling. Activation of endogenous Wnt signalling in Prom1(+/C-L) mice containing a Cre-dependent mutant allele of beta-catenin (Ctnnb1(lox(ex3))) resulted in a gross disruption of crypt architecture and a disproportionate expansion of Prom1(+) cells at the crypt base. Lineage tracing demonstrated that the progeny of these cells replaced the mucosa of the entire small intestine with neoplastic tissue that was characterized by focal high-grade intraepithelial neoplasia and crypt adenoma formation. Although all neoplastic cells arose from Prom1(+) cells in these mice, only 7% of tumour cells retained Prom1 expression. Our data indicate that Prom1 marks stem cells in the adult small intestine that are susceptible to transformation into tumours retaining a fraction of mutant Prom1(+) tumour cells.


Asunto(s)
Antígenos CD/metabolismo , Linaje de la Célula , Transformación Celular Neoplásica , Glicoproteínas/metabolismo , Intestino Delgado/citología , Células Madre Neoplásicas/metabolismo , Péptidos/metabolismo , Células Madre/metabolismo , Células Madre/patología , Antígeno AC133 , Adenoma/genética , Adenoma/metabolismo , Adenoma/patología , Animales , Antígenos CD/análisis , Antígenos CD/genética , Biomarcadores/análisis , Biomarcadores/metabolismo , Células Cultivadas , Genes Reporteros/genética , Glicoproteínas/análisis , Glicoproteínas/genética , Neoplasias Intestinales/genética , Neoplasias Intestinales/metabolismo , Neoplasias Intestinales/patología , Intestino Delgado/patología , Ratones , Mutación , Trasplante de Neoplasias , Células Madre Neoplásicas/citología , Células Madre Neoplásicas/patología , Péptidos/análisis , Péptidos/genética , Receptores Acoplados a Proteínas G/metabolismo , Células Madre/citología , Trasplante Heterólogo , Proteínas Wnt/metabolismo , beta Catenina/genética , beta Catenina/metabolismo
16.
Cell ; 131(2): 378-90, 2007 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-17956737

RESUMEN

During neurogenesis, the progression from a progenitor cell to a differentiated neuron is believed to be unidirectional and irreversible. The Rb family of proteins (Rb, p107, and p130) regulates cell-cycle exit and differentiation during retinogenesis. Rb and p130 are redundantly expressed in the neurons of the inner nuclear layer (INL) of the retina. We have found that in the adult Rb;p130-deficient retinae p107 compensation prevents ectopic proliferation of INL neurons. However, p107 is haploinsufficient in this process. Differentiated Rb(-/-);p107(+/-);p130(-/-) horizontal interneurons re-entered the cell cycle, clonally expanded, and formed metastatic retinoblastoma. Horizontal cells were not affected in Rb(+/-);p107(-/-);p130(-/-) or Rb(-/-);p107(-/-);p130(+/-), retinae suggesting that one copy of Rb or p130 was sufficient to prevent horizontal proliferation. We hereby report that differentiated neurons can proliferate and form cancer while maintaining their differentiated state including neurites and synaptic connections.


Asunto(s)
Interneuronas/fisiología , Neoplasias de la Retina/patología , Retinoblastoma/secundario , Células Madre/fisiología , Animales , Neoplasias de la Médula Ósea/patología , Neoplasias de la Médula Ósea/secundario , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/secundario , Diferenciación Celular , División Celular , Interneuronas/metabolismo , Metástasis Linfática , Ratones , Retina/patología , Retinoblastoma/patología , Proteína de Retinoblastoma/genética , Proteína de Retinoblastoma/fisiología , Proteína p107 Similar a la del Retinoblastoma/genética , Proteína p107 Similar a la del Retinoblastoma/fisiología , Células Madre/metabolismo
17.
J Neurosci ; 27(43): 11510-21, 2007 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-17959794

RESUMEN

Long-term potentiation (LTP) mediates learning and memory in the mammalian hippocampus. Whether a presynaptic or postsynaptic neuron principally enhances synaptic transmission during LTP remains controversial. Acute hippocampal slices were made from transgenic mouse strains that express synaptopHluorin in neurons. SynaptopHluorin is an indicator of synaptic vesicle recycling; thus, we monitored functional changes in presynaptic boutons of CA3 pyramidal cells by measuring changes in synaptopHluorin fluorescence. Simultaneously, we recorded field excitatory postsynaptic potentials to monitor changes in the strength of excitatory synapses between CA3 and CA1 pyramidal neurons. We found that LTP consists of two components, a slow presynaptic component and a fast postsynaptic component. The presynaptic mechanisms contribute mostly to the late phase of compound LTP, whereas the postsynaptic mechanisms are crucial during the early phase of LTP. We also found that protein kinase A (PKA) and L-type voltage-gated calcium channels are crucial for the expression of the presynaptic component of compound LTP, and NMDA channels are essential for that of the postsynaptic component of LTP. These data are the first direct evidence that presynaptic and postsynaptic components of LTP are temporally and mechanistically distinct.


Asunto(s)
Potenciales Postsinápticos Excitadores/fisiología , Potenciación a Largo Plazo/fisiología , Terminales Presinápticos/fisiología , Animales , Hipocampo/fisiología , Ratones , Ratones Transgénicos , Factores de Tiempo
18.
Cancer Cell ; 11(1): 69-82, 2007 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17222791

RESUMEN

Cancers are believed to arise from cancer stem cells (CSCs), but it is not known if these cells remain dependent upon the niche microenvironments that regulate normal stem cells. We show that endothelial cells interact closely with self-renewing brain tumor cells and secrete factors that maintain these cells in a stem cell-like state. Increasing the number of endothelial cells or blood vessels in orthotopic brain tumor xenografts expanded the fraction of self-renewing cells and accelerated the initiation and growth of tumors. Conversely, depletion of blood vessels from xenografts ablated self-renewing cells from tumors and arrested tumor growth. We propose that brain CSCs are maintained within vascular niches that are important targets for therapeutic approaches.


Asunto(s)
Neoplasias Encefálicas/irrigación sanguínea , Células Endoteliales , Células Madre Neoplásicas , Antígeno AC133 , Animales , Antígenos CD/metabolismo , Neoplasias Encefálicas/metabolismo , Comunicación Celular/fisiología , Células Cultivadas , Técnicas de Cocultivo , Células Endoteliales/metabolismo , Femenino , Expresión Génica , Glicoproteínas/metabolismo , Procesamiento de Imagen Asistido por Computador , Inmunohistoquímica , Hibridación Fluorescente in Situ , Ratones , Ratones Desnudos , Células Madre Neoplásicas/metabolismo , Neuronas/metabolismo , Neuronas/patología , Péptidos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...