Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Plant Physiol ; 189(4): 2554-2566, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35522034

RESUMEN

Photosynthesis holds the promise of sustainable generation of useful products using light energy. Key to realizing this potential is the ability to rationally design photosynthesis to redirect energy and reductant derived from photons to desired products. Cytochrome P450s (P450s), which catalyze a broad array of reactions, have been engineered into a variety of photosynthetic organisms, where their activity has been shown to be photosynthesis-dependent, thus acting as heterologous sinks of electrons derived from photosynthesis. Furthermore, the addition of P450s can increase the photosynthetic capacity of the host organism. In this study, we developed this technology further using a P450 (CYP1A1) expressed in the cyanobacterium Synechococcus sp. PCC 7002. We show that rationally engineering photosynthesis by the removal of a competing electron sink, the respiratory terminal oxidase cytochrome c oxidase, increased the activity of CYP1A1. We provide evidence that this enhanced CYP1A1 activity was facilitated via an increase in the flux of electrons through Photosystem I. We also conducted a transcriptomic analysis on the designed strains to gain a more holistic understanding of how the cell responds to rational engineering. We describe a complex response including changes in expression of genes involved in photosynthesis and electron transfer linked to respiration. Specifically, the expression of CYP1A1 resulted in the reduction in expression of other natural electron dissipation pathways. This study emphasizes the potential for engineering photosynthetic organisms in biotechnology but also highlights the need to consider the broader impacts on cellular metabolism of any rationally induced changes.


Asunto(s)
Complejo IV de Transporte de Electrones , Synechococcus , Citocromo P-450 CYP1A1/metabolismo , Transporte de Electrón/genética , Complejo IV de Transporte de Electrones/genética , Complejo IV de Transporte de Electrones/metabolismo , Electrones , Fotosíntesis/genética , Synechococcus/metabolismo
2.
Mar Environ Res ; 170: 105413, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34284178

RESUMEN

Gut microbiota are important for the health, fitness and development of animal hosts, but little is known about these assemblages in wild populations of fish. Such knowledge is particularly important for juvenile life stages where nutritional intake critically determines early development, growth, and ultimately recruitment. We characterise the microbiome inhabiting the gut of young-of-the-year European plaice ('YOY plaice') on sandy beaches, their key juvenile habitat, and examine how these microbial communities vary spatially in relation to diet and nutritional condition of their plaice hosts. Body size, diet (stomach fullness and eukaryotic 18S ribosomal sequencing), nutritional condition (RNA:DNA) and gut microbiota (16S prokaryotic ribosomal sequencing) were compared in fish at two spatial scales: between beaches separated by 10s of kilometres and between sites at different depths on the same beach, separated by 10s of metres. The main microbial phyla in YOY plaice guts were Proteobacteria, Spirochaetes, Tenericutes and Verrucomicrobiae. Within the Proteobacteria there was an unusual dominance of Alphaproteobacteria. Differences in body size, diet and nutritional condition of YOY plaice between beaches were accompanied by differences in gut microbial assemblage structure. Notably, substantially reduced nutritional condition and size at one of the beaches was associated with lower stomach fullness, reduced consumption of annelids and differences in the abundance and presence of specific microbial taxa. Differences were also detected in microbial assemblages, body size, and diet between depths within the same nursery beach, although stomach fullness and nutritional condition did not vary significantly. The functional links between the environment, gut microbiota, and their hosts are potentially important mediators of the development of young fish through critical life stages. Our study indicates that these links need to be addressed at 10 km and even 10 m scales to capture the variability observed in wild populations of juvenile fish.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Animales , Bacterias/genética , Dieta/veterinaria , Peces , ARN Ribosómico 16S
3.
J Biol Chem ; 293(47): 18099-18109, 2018 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-30217820

RESUMEN

Atmospheric nitrogen fixation by photosynthetic cyanobacteria (diazotrophs) strongly influences oceanic primary production and in turn affects global biogeochemical cycles. Species of the genus Trichodesmium are major contributors to marine diazotrophy, accounting for a significant proportion of the fixed nitrogen in tropical and subtropical oceans. However, Trichodesmium spp. are metabolically constrained by the availability of iron, an essential element for both the photosynthetic apparatus and the nitrogenase enzyme. Survival strategies in low-iron environments are typically poorly characterized at the molecular level, because these bacteria are recalcitrant to genetic manipulation. Here, we studied a homolog of the iron deficiency-induced A (IdiA)/ferric uptake transporter A (FutA) protein, Tery_3377, which has been used as an in situ iron-stress biomarker. IdiA/FutA has an ambiguous function in cyanobacteria, with its homologs hypothesized to be involved in distinct processes depending on their cellular localization. Using signal sequence fusions to GFP and heterologous expression in the model cyanobacterium Synechocystis sp. PCC 6803, we show that Tery_3377 is targeted to the periplasm by the twin-arginine translocase and can complement the deletion of the native Synechocystis ferric-iron ABC transporter periplasmic binding protein (FutA2). EPR spectroscopy revealed that purified recombinant Tery_3377 has specificity for iron in the Fe3+ state, and an X-ray crystallography-determined structure uncovered a functional iron substrate-binding domain, with Fe3+ pentacoordinated by protein and buffer ligands. Our results support assignment of Tery_3377 as a functional FutA subunit of an Fe3+ ABC transporter but do not rule out dual IdiA function.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Proteínas de Unión a Hierro/química , Proteínas de Unión a Hierro/metabolismo , Agua de Mar/microbiología , Trichodesmium/metabolismo , Proteínas Bacterianas/genética , Cristalografía por Rayos X , Proteínas de Unión a Hierro/genética , Océanos y Mares , Dominios Proteicos , Trichodesmium/química , Trichodesmium/genética , Trichodesmium/aislamiento & purificación
4.
Front Microbiol ; 8: 2683, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29387046

RESUMEN

The marine cyanobacterium Trichodesmium sp. accounts for approximately half of the annual 'new' nitrogen introduced to the global ocean but its biogeography and activity is often limited by the availability of iron (Fe). A major source of Fe to the open ocean is Aeolian dust deposition in which Fe is largely comprised of particles with reduced bioavailability over soluble forms of Fe. We report that Trichodesmium erythraeum IMS101 has improved growth rate and photosynthetic physiology and down-regulates Fe-stress biomarker genes when cells are grown in the direct vicinity of, rather than physically separated from, Saharan dust particles as the sole source of Fe. These findings suggest that availability of non-soluble forms of dust-associated Fe may depend on cell contact. Transcriptomic analysis further reveals unique profiles of gene expression in all tested conditions, implying that Trichodesmium has distinct molecular signatures related to acquisition of Fe from different sources. Trichodesmium thus appears to be capable of employing specific mechanisms to access Fe from complex sources in oceanic systems, helping to explain its role as a key microbe in global biogeochemical cycles.

5.
Environ Microbiol Rep ; 7(6): 824-30, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26081517

RESUMEN

Species belonging to the filamentous cyanobacterial genus Trichodesmium are responsible for a significant fraction of oceanic nitrogen fixation. The availability of phosphorus (P) likely constrains the growth of Trichodesmium in certain regions of the ocean. Moreover, Trichodesmium species have recently been shown to play a role in an emerging oceanic phosphorus redox cycle, further highlighting the key role these microbes play in many biogeochemical processes in the contemporary ocean. Here, we show that Trichodesmium erythraeum IMS101 can grow on the reduced inorganic compound phosphite as its sole source of P. The components responsible for phosphite utilization are identified through heterologous expression of the T. erythraeum IMS101 Tery_0365-0368 genes, encoding a putative adenosine triphosphate (ATP)-binding cassette transporter and nicotinamide adenine dinucleotide (NAD)-dependent dehydrogenase, in the model cyanobacteria Synechocystis sp. PCC6803. We demonstrate that only combined expression of both the transporter and the dehydrogenase enables Synechocystis to utilize phosphite, confirming the function of Tery_0365-0367 as a phosphite uptake system (PtxABC) and Tery_0368 as a phosphite dehydrogenase (PtxD). Our findings suggest that reported uptake of phosphite by Trichodesmium consortia in the field likely reflects an active biological process by Trichodesmium. These results highlight the diversity of phosphorus sources available to Trichodesmium in a resource-limited ocean.


Asunto(s)
Organismos Acuáticos/metabolismo , Cianobacterias/metabolismo , Fosfitos/metabolismo , Cianobacterias/crecimiento & desarrollo , Regulación Bacteriana de la Expresión Génica , Orden Génico , Fijación del Nitrógeno , Océanos y Mares
6.
Proc Natl Acad Sci U S A ; 112(11): 3511-6, 2015 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-25737552

RESUMEN

The incidence of multidrug-resistant bacterial infections is increasing globally and the need to understand the underlying mechanisms is paramount to discover new therapeutics. The efflux pumps of Gram-negative bacteria have a broad substrate range and transport antibiotics out of the bacterium, conferring intrinsic multidrug resistance (MDR). The genomes of pre- and posttherapy MDR clinical isolates of Salmonella Typhimurium from a patient that failed antibacterial therapy and died were sequenced. In the posttherapy isolate we identified a novel G288D substitution in AcrB, the resistance-nodulation division transporter in the AcrAB-TolC tripartite MDR efflux pump system. Computational structural analysis suggested that G288D in AcrB heavily affects the structure, dynamics, and hydration properties of the distal binding pocket altering specificity for antibacterial drugs. Consistent with this hypothesis, recreation of the mutation in standard Escherichia coli and Salmonella strains showed that G288D AcrB altered substrate specificity, conferring decreased susceptibility to the fluoroquinolone antibiotic ciprofloxacin by increased efflux. At the same time, the substitution increased susceptibility to other drugs by decreased efflux. Information about drug transport is vital for the discovery of new antibacterials; the finding that one amino acid change can cause resistance to some drugs, while conferring increased susceptibility to others, could provide a basis for new drug development and treatment strategies.


Asunto(s)
Sustitución de Aminoácidos , Proteínas Bacterianas/genética , Farmacorresistencia Bacteriana Múltiple , Proteínas de Escherichia coli/genética , Proteínas de Transporte de Membrana/genética , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/genética , Antibacterianos/farmacología , Proteínas Bacterianas/metabolismo , Sitios de Unión , Ciprofloxacina/farmacología , Doxorrubicina/química , Doxorrubicina/metabolismo , Farmacorresistencia Bacteriana Múltiple/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Escherichia coli/genética , Escherichia coli/aislamiento & purificación , Proteínas de Escherichia coli/metabolismo , Aptitud Genética , Genoma Bacteriano , Humanos , Proteínas de Transporte de Membrana/metabolismo , Pruebas de Sensibilidad Microbiana , Minociclina/farmacología , Modelos Moleculares , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo , Mutación/genética , Polimorfismo de Nucleótido Simple/genética , Salmonella enterica/efectos de los fármacos , Salmonella enterica/genética , Salmonella enterica/aislamiento & purificación , Especificidad por Sustrato/efectos de los fármacos , Agua/química
7.
Antimicrob Agents Chemother ; 59(6): 3098-108, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25779578

RESUMEN

Overexpression of the ABC transporter genes patA and patB confers efflux-mediated fluoroquinolone resistance in Streptococcus pneumoniae and is also linked to pneumococcal stress responses. Although upregulation of patAB has been observed in many laboratory mutants and clinical isolates, the regulatory mechanisms controlling expression of these genes are unknown. In this study, we aimed to identify the cause of high-level constitutive overexpression of patAB in M184, a multidrug-resistant mutant of S. pneumoniae R6. Using a whole-genome transformation and sequencing approach, we identified a novel duplication of a 9.2-kb region of the M184 genome which included the patAB genes. This duplication did not affect growth and was semistable with a low segregation rate. The expression levels of patAB in M184 were much higher than those that could be fully explained by doubling of the gene dosage alone, and inactivation of the first copy of patA had no effect on multidrug resistance. Using a green fluorescent protein reporter system, increased patAB expression was ascribed to transcriptional read-through from a tRNA gene upstream of the second copy of patAB. This is the first report of a large genomic duplication causing antibiotic resistance in S. pneumoniae and also of a genomic duplication causing antibiotic resistance by a promoter switching mechanism.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/genética , Proteínas Bacterianas/genética , Fluoroquinolonas/farmacología , Amplificación de Genes/genética , Streptococcus pneumoniae/genética , Antibacterianos/farmacología , Streptococcus pneumoniae/efectos de los fármacos
8.
J Antimicrob Chemother ; 70(3): 670-9, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25411187

RESUMEN

OBJECTIVES: Constitutive overexpression of patAB has been observed in several unrelated fluoroquinolone-resistant laboratory mutants and clinical isolates; therefore, we sought to identify the cause of this overexpression. METHODS: Constitutive patAB overexpression in two clinical isolates and a laboratory-selected mutant was investigated using a whole-genome transformation approach. To determine the effect of the detected terminator mutations, the WT and mutated patA leader sequences were cloned upstream of a GFP reporter. Finally, mutation of the opposing base in the stem-loop structure was carried out. RESULTS: We identified three novel mutations causing up-regulation of patAB. All three of these were located in the upstream region of patA and affected the same Rho-independent transcriptional terminator structure. Each mutation was predicted to destabilize the terminator stem-loop to a different degree, and there was a strong correlation between predicted terminator stability and patAB expression level. Using a GFP reporter of patA transcription, these terminator mutations led to increased transcription of a downstream gene. For one mutant sequence, terminator stability could be restored by mutation of the opposing base in the stem-loop structure, demonstrating that transcriptional suppression of patAB is mediated by the terminator stem-loop structure. CONCLUSIONS: This study showed that a mutation in a Rho-independent transcriptional terminator structure confers overexpression of patAB and fluoroquinolone resistance. Understanding how levels of the PatAB efflux pump are regulated increases our knowledge of pneumococcal biology and how the pneumococcus can respond to various stresses, including antimicrobials.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , Antibacterianos/farmacología , Farmacorresistencia Bacteriana , Fluoroquinolonas/farmacología , Regulación Bacteriana de la Expresión Génica , Streptococcus pneumoniae/efectos de los fármacos , Terminación de la Transcripción Genética , Transportadoras de Casetes de Unión a ATP/genética , Humanos , Mutación , Streptococcus pneumoniae/enzimología , Streptococcus pneumoniae/genética
9.
Nat Rev Microbiol ; 13(1): 42-51, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25435309

RESUMEN

Antibiotic-resistant bacteria that are difficult or impossible to treat are becoming increasingly common and are causing a global health crisis. Antibiotic resistance is encoded by several genes, many of which can transfer between bacteria. New resistance mechanisms are constantly being described, and new genes and vectors of transmission are identified on a regular basis. This article reviews recent advances in our understanding of the mechanisms by which bacteria are either intrinsically resistant or acquire resistance to antibiotics, including the prevention of access to drug targets, changes in the structure and protection of antibiotic targets and the direct modification or inactivation of antibiotics.


Asunto(s)
Antibacterianos , Bacterias , Farmacorresistencia Bacteriana , Antibacterianos/metabolismo , Antibacterianos/farmacología , Bacterias/efectos de los fármacos , Bacterias/metabolismo , Bacterias/patogenicidad , Transducción de Señal
10.
Antimicrob Agents Chemother ; 57(7): 3348-57, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23650175

RESUMEN

The field of antibiotic drug discovery and the monitoring of new antibiotic resistance elements have yet to fully exploit the power of the genome revolution. Despite the fact that the first genomes sequenced of free living organisms were those of bacteria, there have been few specialized bioinformatic tools developed to mine the growing amount of genomic data associated with pathogens. In particular, there are few tools to study the genetics and genomics of antibiotic resistance and how it impacts bacterial populations, ecology, and the clinic. We have initiated development of such tools in the form of the Comprehensive Antibiotic Research Database (CARD; http://arpcard.mcmaster.ca). The CARD integrates disparate molecular and sequence data, provides a unique organizing principle in the form of the Antibiotic Resistance Ontology (ARO), and can quickly identify putative antibiotic resistance genes in new unannotated genome sequences. This unique platform provides an informatic tool that bridges antibiotic resistance concerns in health care, agriculture, and the environment.


Asunto(s)
Antiinfecciosos , Bases de Datos Genéticas , Farmacorresistencia Microbiana/genética , Genes Bacterianos , Secuencia de Bases , Biología Computacional , Genoma Bacteriano , Internet , Interfaz Usuario-Computador
11.
Antimicrob Agents Chemother ; 55(1): 190-6, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20937787

RESUMEN

Fifty-seven clinical isolates of Streptococcus pneumoniae were divided into four groups based on their susceptibilities to the fluoroquinolones ciprofloxacin and norfloxacin and the dyes ethidium bromide and acriflavine. Comparative reverse transcription-PCR was used to determine the level of expression of the genes patA and patB, which encode putative ABC transporters. Overexpression was observed in 14 of the 15 isolates that were resistant to both fluoroquinolones and dyes and in only 3 of 24 of those resistant to fluoroquinolones only. Isolates overexpressing patA and patB accumulated significantly less of the fluorescent dye Hoechst 33342 than wild-type isolates, suggesting that PatA and PatB are involved in efflux. Inactivation of patA and patB by in vitro mariner mutagenesis conferred hypersusceptibility to ethidium bromide and acriflavine in all isolates tested and lowered the MICs of ciprofloxacin in the patAB-overproducing and/or fluoroquinolone-resistant isolates. These data represent the first observation of overexpression of patA and patB in clinical isolates and show that PatA and PatB play a clinically relevant role in fluoroquinolone resistance.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , Antibacterianos/farmacología , Proteínas Bacterianas/metabolismo , Fluoroquinolonas/farmacología , Streptococcus pneumoniae/efectos de los fármacos , Streptococcus pneumoniae/metabolismo , Transportadoras de Casetes de Unión a ATP/genética , Proteínas Bacterianas/genética , Ciprofloxacina/farmacología , Farmacorresistencia Bacteriana/genética , Pruebas de Sensibilidad Microbiana , Reacción en Cadena de la Polimerasa , Streptococcus pneumoniae/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...