Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Ann Biomed Eng ; 52(3): 657-670, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38079083

RESUMEN

Interest in studying neonatal development and the improved healing response observed in neonates is increasing, with the goal of using this work to create better therapeutics for tendon injury. Decorin and biglycan are two small leucine-rich proteoglycans that play important roles in collagen fibrillogenesis to develop, maintain, and repair tendon structure. However, little is known about the roles of decorin and biglycan in early neonatal development and healing. The goal of this study was to determine the effects of decorin and biglycan knockdown on Achilles tendon structure and mechanics during neonatal development and recovery of these properties after injury of the neonatal tendon. We hypothesized that knockdown of decorin and biglycan would disrupt the neonatal tendon developmental process and produce tendons with impaired mechanical and structural properties. We found that knockdown of decorin and biglycan in an inducible, compound decorin/biglycan knockdown model, both during development and after injury, in neonatal mice produced tendons with reduced mechanical properties. Additionally, the collagen fibril microstructure resembled an immature tendon with a large population of small diameter fibrils and an absence of larger diameter fibrils. Overall, this study demonstrates the importance of decorin and biglycan in facilitating tendon growth and maturation during neonatal development.


Asunto(s)
Tendón Calcáneo , Animales , Ratones , Tendón Calcáneo/fisiología , Biglicano/genética , Colágeno/química , Decorina/genética , Proteínas de la Matriz Extracelular
2.
J Orthop Res ; 41(10): 2287-2294, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-36822659

RESUMEN

Biglycan, a small leucine-rich proteoglycan (SLRP), is involved in collagen fibrillogenesis and also acts as a signaling molecule. Although decorin has been considered as the primary SLRP in developing and maintaining tendon structure and mechanics, more recent work using inducible knockdown models suggests that biglycan is involved in tendon homeostasis. The purpose of the study was to determine the role of biglycan in tendon homeostasis to maintain mechanical and structural integrity in aged mice. Aged (485 days old) female Bgn+/+ control (wild type [WT], n = 16) and 16 bitransgenic conditional Bgnflox/flox mice (I-Bgn-/- , n = 16) with a tamoxifen-inducible Cre (driven by ROSA) were utilized. After biglycan knockdown, the transgenic model demonstrated effective knockdown of the target gene without any compensation from other SLRPs or type I collagen. Patellar tendon cellularity was not modified after biglycan knockdown. However, biglycan knockdown had an impact on collagen fibrillogenesis with a higher percentage of small diameter fibrils (25-45 nm) and a lower percentage of medium size fibrils (150-165 nm) in I-Bgn-/- tendons. Biglycan knockdown also induced a reduction in the midsubstance modulus and maximum stress compared to WT. Stress relaxation was reduced at 4% strain in I-Bgn-/- tendons but no changes were observed in dynamic modulus and tan delta. As in mature tendons (120 days old), this study showed significant effects of biglycan knockdown on mechanical and structural properties of aged tendons only 30 days after knockdown. These data suggest that biglycan has a major role in maintaining homeostasis in aged tendon.


Asunto(s)
Colágeno , Tendones , Femenino , Ratones , Animales , Biglicano/genética , Decorina , Fenómenos Biomecánicos , Colágeno/química , Envejecimiento , Proteínas de la Matriz Extracelular
3.
Connect Tissue Res ; 64(1): 75-81, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-35816119

RESUMEN

PURPOSE: A growing interest in the mechanisms that govern tendon healing has resulted in the develop-ment of tools, such as the tamoxifen-inducible mouse knockdown model, to address these questions. However, tamoxifen is a selective estrogen receptor modulator and may interfere with the tendon healing process. The objective of this study was to evaluate the effects of tamoxifen on post-injury tendon mechanics in wild-type mice. METHODS: The mice underwent treatment at the time of injury using an established mouse injury model and the injured tendons were evaluated 3 weeks post-injury. The treatment contained tamoxifen suspended in corn oil and was compared to a treatment with only corn oil, as well as mice with no treatment. Tendons were evaluated by measuring the quasi-static and viscoelastic mechanics, collagen fiber realignment, cellularity, and nuclear morphology. RESULTS: Mechanical testing of the tendons post-injury revealed no changes to viscoelastic mechanics, quasi-static mechanics, or collagen realignment during loading after tamoxifen treatment with the dosage regimen utilized (three daily injections of 4.5 mg/40 g body weight). Additionally, histological analysis revealed no changes to cellularity or cell nuclear shape. CONCLUSION: Overall, this study revealed that tamoxifen treatment at the time of tendon injury did not result in changes to tendon mechanics or the histological parameters at 3 weeks post-injury.


Asunto(s)
Tamoxifeno , Traumatismos de los Tendones , Ratones , Animales , Tamoxifeno/farmacología , Aceite de Maíz , Tendones/patología , Traumatismos de los Tendones/patología , Colágeno , Modelos Animales de Enfermedad
4.
Matrix Biol Plus ; 15: 100114, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35818471

RESUMEN

Decorin and biglycan are two major small leucine-rich proteoglycans (SLRPs) present in the tendon extracellular matrix that facilitate collagen fibrillogenesis, tissue turnover, and cell signal transduction. Previously, we demonstrated that knockout of decorin prevented the decline of tendon mechanical properties that are associated with aging. The objective of this study was to determine the effects of decorin and biglycan knockdown on tendon structure and mechanics in aged tendons using tamoxifen-inducible knockdown models. We hypothesized that the knockdown of decorin and compound knockdown of decorin and biglycan would prevent age-related declines in tendon mechanics and structure compared to biglycan knockdown and wild-type controls, and that these changes would be exacerbated as the tendons progress towards geriatric ages. To achieve this objective, we created tamoxifen-inducible mouse knockdown models to target decorin and biglycan gene inactivation without the abnormal tendon development associated with traditional knockout models. Knockdown of decorin led to increased midsubstance modulus and decreased stress relaxation in aged tendons. However, these changes were not sustained in the geriatric tendons. Knockdown in biglycan led to no changes in mechanics in the aged or geriatric tendons. Contrary to our hypothesis, the compound decorin/biglycan knockdown tendons did not resemble the decorin knockdown tendons, but resulted in increased viscoelastic properties in the aged and geriatric tendons. Structurally, knockdown of SLRPs, except for the 570d I-Dcn -/- /Bgn -/- group, resulted in alterations to the collagen fibril diameter relative to wild-type controls. Overall, this study identified the differential roles of decorin and biglycan throughout tendon aging in the maintenance of tendon structural and mechanical properties and revealed that the compound decorin and biglycan knockdown phenotype did not resemble the single gene decorin or biglycan models and was detrimental to tendon properties throughout aging.

5.
J Orthop Res ; 40(11): 2546-2556, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35171523

RESUMEN

Decorin and biglycan are two small leucine-rich proteoglycans (SLRPs) that regulate collagen fibrillogenesis and extracellular matrix assembly in tendon. The objective of this study was to determine the individual roles of these molecules in maintaining the structural and mechanical properties of tendon during homeostasis in mature mice. We hypothesized that knockdown of decorin in mature tendons would result in detrimental changes to tendon structure and mechanics while knockdown of biglycan would have a minor effect on these parameters. To achieve this objective, we created tamoxifen-inducible mouse knockdown models targeting decorin or biglycan inactivation. This enables the evaluation of the roles of these SLRPs in mature tendon without the abnormal tendon development caused by conventional knockout models. Contrary to our hypothesis, knockdown of decorin resulted in minor alterations to tendon structure and no changes to mechanics while knockdown of biglycan resulted in broad changes to tendon structure and mechanics. Specifically, knockdown of biglycan resulted in reduced insertion modulus, maximum stress, dynamic modulus, stress relaxation, and increased collagen fiber realignment during loading. Knockdown of decorin and biglycan produced similar changes to tendon microstructure by increasing the collagen fibril diameter relative to wild-type controls. Biglycan knockdown also decreased the cell nuclear aspect ratio, indicating a more spindle-like nuclear shape. Overall, the extensive changes to tendon structure and mechanics after knockdown of biglycan, but not decorin, provides evidence that biglycan plays a major role in the maintenance of tendon structure and mechanics in mature mice during homeostasis.


Asunto(s)
Colágeno , Tendones , Animales , Biglicano/análisis , Colágeno/química , Modelos Animales de Enfermedad , Matriz Extracelular/química , Proteínas de la Matriz Extracelular , Ratones , Tamoxifeno , Tendones/fisiología
6.
J Biomech ; 63: 151-157, 2017 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-28893394

RESUMEN

A rotator cuff tear is a common injury in athletes and workers who repeatedly perform overhead movements, and it is not uncommon for this demographic to return to activity shortly after treatment. A biceps tenotomy is often performed in the presence of a rotator cuff tear to help reduce pain and improve joint function. However, the effect of this procedure on the surrounding tissues in the glenohumeral joint is unknown. Therefore, the purpose of this study was to investigate the effect of a biceps tenotomy in the presence of a supraspinatus rotator cuff tear followed by overuse activity on ambulatory function and mechanical and histologic properties of the remaining rotator cuff tendons and glenoid cartilage. 46 rats underwent 4weeks of overuse activity to create a tendinopathic condition, then were randomized into two groups: unilateral detachment of the supraspinatus tendon or detachment of the supraspinatus and long head of the biceps tendons. Ambulatory measurements were performed throughout the 8weeks prior to euthanasia, followed by analysis of the properties of the remaining intact tendons and glenoid cartilage. Results demonstrate that shoulder function was not effected in the biceps tenotomy group. However, the intact tendons and glenoid cartilage showed altered mechanical and histologic properties. This study provides evidence from an animal model that does not support the use of tenotomy in the presence of a supraspinatus tendon rotator cuff tear, and provides a framework for physicians to better prescribe long-term treatment strategies for patients.


Asunto(s)
Cartílago Articular/patología , Lesiones del Manguito de los Rotadores/fisiopatología , Tendones/cirugía , Animales , Fenómenos Biomecánicos , Cartílago Articular/fisiopatología , Masculino , Músculo Esquelético/fisiopatología , Ratas , Ratas Sprague-Dawley , Manguito de los Rotadores/fisiopatología , Escápula/fisiopatología , Articulación del Hombro/patología , Articulación del Hombro/fisiopatología , Tendones/fisiopatología , Tenotomía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...