Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Neurosci ; 44(29)2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-38744530

RESUMEN

Sleep disorders affect millions of people around the world and have a high comorbidity with psychiatric disorders. While current hypnotics mostly increase non-rapid eye movement sleep (NREMS), drugs acting selectively on enhancing rapid eye movement sleep (REMS) are lacking. This polysomnographic study in male rats showed that the first-in-class selective melatonin MT1 receptor partial agonist UCM871 increases the duration of REMS without affecting that of NREMS. The REMS-promoting effects of UCM871 occurred by inhibiting, in a dose-response manner, the firing activity of the locus ceruleus (LC) norepinephrine (NE) neurons, which express MT1 receptors. The increase of REMS duration and the inhibition of LC-NE neuronal activity by UCM871 were abolished by MT1 pharmacological antagonism and by an adeno-associated viral (AAV) vector, which selectively knocked down MT1 receptors in the LC-NE neurons. In conclusion, MT1 receptor agonism inhibits LC-NE neurons and triggers REMS, thus representing a novel mechanism and target for REMS disorders and/or psychiatric disorders associated with REMS impairments.


Asunto(s)
Locus Coeruleus , Ratas Sprague-Dawley , Receptor de Melatonina MT1 , Sueño REM , Animales , Masculino , Locus Coeruleus/efectos de los fármacos , Locus Coeruleus/metabolismo , Locus Coeruleus/fisiología , Ratas , Receptor de Melatonina MT1/agonistas , Receptor de Melatonina MT1/metabolismo , Sueño REM/fisiología , Sueño REM/efectos de los fármacos , Norepinefrina/metabolismo , Neuronas Adrenérgicas/efectos de los fármacos , Neuronas Adrenérgicas/metabolismo , Neuronas Adrenérgicas/fisiología , Neuronas/metabolismo , Neuronas/efectos de los fármacos , Neuronas/fisiología
3.
Artículo en Inglés | MEDLINE | ID: mdl-38000716

RESUMEN

BACKGROUND: miR-137 is a microRNA involved in brain development, regulating neurogenesis and neuronal maturation. Genome-wide association studies have implicated miR-137 in schizophrenia risk but do not explain its involvement in brain function and underlying biology. Polygenic risk for schizophrenia mediated by miR-137 targets is associated with working memory, although other evidence points to emotion processing. We characterized the functional brain correlates of miR-137 target genes associated with schizophrenia while disentangling previously reported associations of miR-137 targets with working memory and emotion processing. METHODS: Using RNA sequencing data from postmortem prefrontal cortex (N = 522), we identified a coexpression gene set enriched for miR-137 targets and schizophrenia risk genes. We validated the relationship of this set to miR-137 in vitro by manipulating miR-137 expression in neuroblastoma cells. We translated this gene set into polygenic scores of coexpression prediction and associated them with functional magnetic resonance imaging activation in healthy volunteers (n1 = 214; n2 = 136; n3 = 2075; n4 = 1800) and with short-term treatment response in patients with schizophrenia (N = 427). RESULTS: In 4652 human participants, we found that 1) schizophrenia risk genes were coexpressed in a biologically validated set enriched for miR-137 targets; 2) increased expression of miR-137 target risk genes was mediated by low prefrontal miR-137 expression; 3) alleles that predict greater gene set coexpression were associated with greater prefrontal activation during emotion processing in 3 independent healthy cohorts (n1, n2, n3) in interaction with age (n4); and 4) these alleles predicted less improvement in negative symptoms following antipsychotic treatment in patients with schizophrenia. CONCLUSIONS: The functional translation of miR-137 target gene expression linked with schizophrenia involves the neural substrates of emotion processing.


Asunto(s)
MicroARNs , Esquizofrenia , Humanos , Estudio de Asociación del Genoma Completo , Encéfalo , MicroARNs/genética , MicroARNs/metabolismo , Emociones
4.
Br J Pharmacol ; 180 Suppl 2: S23-S144, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-38123151

RESUMEN

The Concise Guide to PHARMACOLOGY 2023/24 is the sixth in this series of biennial publications. The Concise Guide provides concise overviews, mostly in tabular format, of the key properties of approximately 1800 drug targets, and about 6000 interactions with about 3900 ligands. There is an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands (https://www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. Although the Concise Guide constitutes almost 500 pages, the material presented is substantially reduced compared to information and links presented on the website. It provides a permanent, citable, point-in-time record that will survive database updates. The full contents of this section can be found at http://onlinelibrary.wiley.com/doi/bph.16177. G protein-coupled receptors are one of the six major pharmacological targets into which the Guide is divided, with the others being: ion channels, nuclear hormone receptors, catalytic receptors, enzymes and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. The landscape format of the Concise Guide is designed to facilitate comparison of related targets from material contemporary to mid-2023, and supersedes data presented in the 2021/22, 2019/20, 2017/18, 2015/16 and 2013/14 Concise Guides and previous Guides to Receptors and Channels. It is produced in close conjunction with the Nomenclature and Standards Committee of the International Union of Basic and Clinical Pharmacology (NC-IUPHAR), therefore, providing official IUPHAR classification and nomenclature for human drug targets, where appropriate.


Asunto(s)
Bases de Datos Farmacéuticas , Receptores Acoplados a Proteínas G , Humanos , Ligandos , Canales Iónicos/química , Receptores Citoplasmáticos y Nucleares
5.
Hippocampus ; 33(10): 1075-1093, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37421207

RESUMEN

We investigated the mechanisms underlying the effects of the antidepressant fluoxetine on behavior and adult hippocampal neurogenesis (AHN). After confirming our earlier report that the signaling molecule ß-arrestin-2 (ß-Arr2) is required for the antidepressant-like effects of fluoxetine, we found that the effects of fluoxetine on proliferation of neural progenitors and survival of adult-born granule cells are absent in the ß-Arr2 knockout (KO) mice. To our surprise, fluoxetine induced a dramatic upregulation of the number of doublecortin (DCX)-expressing cells in the ß-Arr2 KO mice, indicating that this marker can be increased even though AHN is not. We discovered two other conditions where a complex relationship occurs between the number of DCX-expressing cells compared to levels of AHN: a chronic antidepressant model where DCX is upregulated and an inflammation model where DCX is downregulated. We concluded that assessing the number of DCX-expressing cells alone to quantify levels of AHN can be complex and that caution should be applied when label retention techniques are unavailable.


Asunto(s)
Proteína Doblecortina , Fluoxetina , Animales , Ratones , Antidepresivos/farmacología , Fluoxetina/farmacología , Hipocampo/fisiología , Neurogénesis/fisiología , Neuronas
6.
Front Mol Neurosci ; 15: 1028963, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36504683

RESUMEN

Inhibition of Glycogen synthase kinase 3 (GSK3) is a popular explanation for the effects of lithium ions on mood regulation in bipolar disorder and other mental illnesses, including major depression, cyclothymia, and schizophrenia. Contribution of GSK3 is supported by evidence obtained from animal and patient derived model systems. However, the two GSK3 enzymes, GSK3α and GSK3ß, have more than 100 validated substrates. They are thus central hubs for major biological functions, such as dopamine-glutamate neurotransmission, synaptic plasticity (Hebbian and homeostatic), inflammation, circadian regulation, protein synthesis, metabolism, inflammation, and mitochondrial functions. The intricate contributions of GSK3 to several biological processes make it difficult to identify specific mechanisms of mood stabilization for therapeutic development. Identification of GSK3 substrates involved in lithium therapeutic action is thus critical. We provide an overview of GSK3 biological functions and substrates for which there is evidence for a contribution to lithium effects. A particular focus is given to four of these: the transcription factor cAMP response element-binding protein (CREB), the RNA-binding protein FXR1, kinesin subunits, and the cytoskeletal regulator CRMP2. An overview of how co-regulation of these substrates may result in shared outcomes is also presented. Better understanding of how inhibition of GSK3 contributes to the therapeutic effects of lithium should allow for identification of more specific targets for future drug development. It may also provide a framework for the understanding of how lithium effects overlap with those of other drugs such as ketamine and antipsychotics, which also inhibit brain GSK3.

7.
Br J Pharmacol ; 178 Suppl 1: S27-S156, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34529832

RESUMEN

The Concise Guide to PHARMACOLOGY 2021/22 is the fifth in this series of biennial publications. The Concise Guide provides concise overviews, mostly in tabular format, of the key properties of nearly 1900 human drug targets with an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. Although the Concise Guide constitutes over 500 pages, the material presented is substantially reduced compared to information and links presented on the website. It provides a permanent, citable, point-in-time record that will survive database updates. The full contents of this section can be found at http://onlinelibrary.wiley.com/doi/bph.15538. G protein-coupled receptors are one of the six major pharmacological targets into which the Guide is divided, with the others being: ion channels, nuclear hormone receptors, catalytic receptors, enzymes and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. The landscape format of the Concise Guide is designed to facilitate comparison of related targets from material contemporary to mid-2021, and supersedes data presented in the 2019/20, 2017/18, 2015/16 and 2013/14 Concise Guides and previous Guides to Receptors and Channels. It is produced in close conjunction with the Nomenclature and Standards Committee of the International Union of Basic and Clinical Pharmacology (NC-IUPHAR), therefore, providing official IUPHAR classification and nomenclature for human drug targets, where appropriate.


Asunto(s)
Bases de Datos Farmacéuticas , Farmacología , Humanos , Canales Iónicos , Ligandos , Receptores Citoplasmáticos y Nucleares , Receptores Acoplados a Proteínas G
8.
Eur Psychiatry ; 64(1): e39, 2021 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-33866994

RESUMEN

BACKGROUND: Genome-Wide Association Studies (GWASs) have identified several genes associated with Schizophrenia (SCZ) and exponentially increased knowledge on the genetic basis of the disease. In addition, products of GWAS genes interact with neuronal factors coded by genes lacking association, such that this interaction may confer risk for specific phenotypes of this brain disorder. In this regard, fragile X mental retardation syndrome-related 1 (FXR1) gene has been GWAS associated with SCZ. FXR1 protein is regulated by glycogen synthase kinase-3ß (GSK3ß), which has been implicated in pathophysiology of SCZ and response to antipsychotics (APs). rs496250 and rs12630592, two eQTLs (Expression Quantitative Trait Loci) of FXR1 and GSK3ß, respectively, interact on emotion stability and amygdala/prefrontal cortex activity during emotion processing. These two phenotypes are associated with Negative Symptoms (NSs) of SCZ suggesting that the interaction between these SNPs may also affect NS severity and responsiveness to medication. METHODS: To test this hypothesis, in two independent samples of patients with SCZ, we investigated rs496250 by rs12630592 interaction on NS severity and response to APs. We also tested a putative link between APs administration and FXR1 expression, as already reported for GSK3ß expression. RESULTS: We found that rs496250 and rs12630592 interact on NS severity. We also found evidence suggesting interaction of these polymorphisms also on response to APs. This interaction was not present when looking at positive and general psychopathology scores. Furthermore, chronic olanzapine administration led to a reduction of FXR1 expression in mouse frontal cortex. DISCUSSION: Our findings suggest that, like GSK3ß, FXR1 is affected by APs while shedding new light on the role of the FXR1/GSK3ß pathway for NSs of SCZ.


Asunto(s)
Antipsicóticos , Glucógeno Sintasa Quinasa 3 beta , Proteínas de Unión al ARN , Esquizofrenia , Animales , Antipsicóticos/farmacología , Antipsicóticos/uso terapéutico , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Glucógeno Sintasa Quinasa 3 beta/genética , Humanos , Ratones , Polimorfismo de Nucleótido Simple , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/uso terapéutico , Esquizofrenia/tratamiento farmacológico , Esquizofrenia/genética
9.
Sci Rep ; 11(1): 4523, 2021 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-33633238

RESUMEN

Mitochondrial health plays a crucial role in human brain development and diseases. However, the evaluation of mitochondrial health in the brain is not incorporated into clinical practice due to ethical and logistical concerns. As a result, the development of targeted mitochondrial therapeutics remains a significant challenge due to the lack of appropriate patient-derived brain tissues. To address these unmet needs, we developed cerebral organoids (COs) from induced pluripotent stem cells (iPSCs) derived from human peripheral blood mononuclear cells (PBMCs) and monitored mitochondrial health from the primary, reprogrammed and differentiated stages. Our results show preserved mitochondrial genetics, function and treatment responses across PBMCs to iPSCs to COs, and measurable neuronal activity in the COs. We expect our approach will serve as a model for more widespread evaluation of mitochondrial health relevant to a wide range of human diseases using readily accessible patient peripheral (PBMCs) and stem-cell derived brain tissue samples.


Asunto(s)
Diferenciación Celular , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Leucocitos Mononucleares/citología , Leucocitos Mononucleares/metabolismo , Mitocondrias/metabolismo , Neurogénesis , Biomarcadores , Técnicas de Cultivo de Célula , Reprogramación Celular/genética , Fenómenos Electrofisiológicos , Técnica del Anticuerpo Fluorescente , Mitocondrias/genética , Mitocondrias/ultraestructura , Organoides , Sinapsis/fisiología , Transmisión Sináptica
10.
EMBO J ; 39(21): e103864, 2020 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-32893934

RESUMEN

The fragile X autosomal homolog 1 (Fxr1) is regulated by lithium and has been GWAS-associated with schizophrenia and insomnia. Homeostatic regulation of synaptic strength is essential for the maintenance of brain functions and involves both cell-autonomous and system-level processes such as sleep. We examined the contribution of Fxr1 to cell-autonomous homeostatic synaptic scaling and neuronal responses to sleep loss, using a combination of gene overexpression and Crispr/Cas9-mediated somatic knockouts to modulate gene expression. Our findings indicate that Fxr1 is downregulated during both scaling and sleep deprivation via a glycogen synthase kinase 3 beta (GSK3ß)-dependent mechanism. In both conditions, downregulation of Fxr1 is essential for the homeostatic modulation of surface AMPA receptors and synaptic strength. Preventing the downregulation of Fxr1 during sleep deprivation results in altered EEG signatures. Furthermore, sequencing of neuronal translatomes revealed the contribution of Fxr1 to changes induced by sleep deprivation. These findings uncover a role of Fxr1 as a shared signaling hub between cell-autonomous homeostatic plasticity and system-level responses to sleep loss, with potential implications for neuropsychiatric illnesses and treatments.


Asunto(s)
Homeostasis/fisiología , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Sueño/genética , Sueño/fisiología , Animales , Encéfalo/fisiología , Modelos Animales de Enfermedad , Regulación hacia Abajo , Regulación de la Expresión Génica , Técnicas de Inactivación de Genes , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Plasticidad Neuronal , Neuronas/metabolismo , Receptores AMPA/metabolismo , Transcriptoma
11.
Mol Brain ; 13(1): 121, 2020 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-32891169

RESUMEN

The release of dopamine (DA) into target brain areas is considered an essential event for the modulation of many physiological effects. While the anterior cingulate cortex (ACC) has been implicated in pain related behavioral processes, DA modulation of synaptic transmission within the ACC and pain related phenotypes remains unclear. Here we characterized a Crispr/Cas9 mediated somatic knockout of the D1 receptor (D1R) in all neuronal subtypes of the ACC and find reduced mechanical thresholds, without affecting locomotion and anxiety. Further, the D1R high-efficacy agonist SKF 81297 and low efficacy agonist (±)-SKF-38393 inhibit α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic receptor (AMPAR) currents in the ACC. Paradoxically, the D1R antagonists SCH-23390 and SCH 33961 when co-applied with D1R agonists produced a robust short-term synergistic depression of AMPAR currents in the ACC, demonstrating an overall inhibitory role for D1R ligands. Overall, our data indicate that absence of D1Rs in the ACC enhanced peripheral sensitivity to mechanical stimuli and D1R activation decreased glutamatergic synaptic transmission in ACC neurons.


Asunto(s)
Ácido Glutámico/metabolismo , Giro del Cíngulo/metabolismo , Receptores de Dopamina D1/metabolismo , Umbral Sensorial , Transmisión Sináptica , Animales , Conducta Animal/efectos de los fármacos , Benzazepinas/farmacología , Sistemas CRISPR-Cas/genética , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Técnicas de Inactivación de Genes , Giro del Cíngulo/efectos de los fármacos , Giro del Cíngulo/fisiopatología , Activación del Canal Iónico/efectos de los fármacos , Masculino , Ratones Endogámicos C57BL , Dolor/patología , Dolor/fisiopatología , Receptores de Dopamina D1/agonistas , Receptores de Dopamina D1/antagonistas & inhibidores , Receptores de N-Metil-D-Aspartato/metabolismo , Umbral Sensorial/efectos de los fármacos , Transmisión Sináptica/efectos de los fármacos
12.
CRISPR J ; 3(3): 198-210, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32584144

RESUMEN

Glycogen synthase kinase 3ß (GSK3ß) activity is regulated by dopamine D2 receptor signaling and can be inhibited by psychoactive drugs in a D2 receptor-dependent manner. However, GSK3ß is ubiquitously expressed in the brain, and D2 receptor-expressing cells are distributed as a mosaic in multiple cortical regions. This complicates the interrogation of GSK3ß functions in cortical D2 cells in a circuit-defined manner using conventional animal models. We used a CRISPR-Cas9-mediated intersectional approach to achieve targeted deletion of GSK3ß in D2-expressing neurons of the adult medial prefrontal cortex (mPFC). Isolation and analysis of ribosome-associated RNA specifically from mPFC D2 neurons lacking GSK3ß demonstrated large-scale translatome alterations. Deletion of GSK3ß in mPFC D2 neurons revealed its contribution to anxiety-related, cognitive, and social behaviors. Our results underscore the viability of an intersectional knockout approach to study functions of a ubiquitous gene in a network-defined fashion while uncovering the contribution of GSK3ß expressed in mPFC D2 neurons in the regulation of behavioral dimensions related to mood and emotions. This advances our understanding of GSK3ß action at a brain circuit level and can potentially lead to the development of circuit selective therapeutics.


Asunto(s)
Sistemas CRISPR-Cas , Regulación Emocional/fisiología , Glucógeno Sintasa Quinasa 3 beta/genética , Neuronas/metabolismo , Corteza Prefrontal/metabolismo , Receptores de Dopamina D2/genética , Receptores de Dopamina D2/metabolismo , Afecto , Animales , Encéfalo/metabolismo , Emociones , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Masculino , Ratones , Ratones Noqueados , Mutación , Transducción de Señal
13.
Eur Neuropsychopharmacol ; 35: 126-135, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32439227

RESUMEN

D2 autoreceptors provide an important regulatory mechanism of dopaminergic neurotransmission. However, D2 receptors are also expressed as heteroreceptors at postsynaptic membranes. The expression and the functional characteristics of both, D2 auto- and heteroreceptors, differ between brain regions. Therefore, one would expect that also the net response to a D2 antagonist, i.e. whether and to what degree overall neural activity increases or decreases, varies across brain areas. In the current study we systematically tested this hypothesis by parametrically increasing haloperidol levels (placebo, 2 and 3 mg) in healthy volunteers and measuring brain activity in the three major dopaminergic pathways. In particular, activity was assessed using fMRI while participants performed a working memory and a reinforcement learning task. Consistent with the hypothesis, across brain regions activity parametrically in- and decreased. Moreover, even within the same area there were function-specific concurrent de- and increases of activity, likely caused by input from upstream dopaminergic regions. In the ventral striatum, for instance, activity during reinforcement learning decreased for outcome processing while prediction error related activity increased. In conclusion, the current study highlights the intricacy of D2 neurotransmission which makes it difficult to predict the function-specific net response of a given area to pharmacological manipulations.


Asunto(s)
Corteza Cerebral/efectos de los fármacos , Cuerpo Estriado/efectos de los fármacos , Antagonistas de los Receptores de Dopamina D2/administración & dosificación , Haloperidol/administración & dosificación , Mesencéfalo/efectos de los fármacos , Refuerzo en Psicología , Corteza Cerebral/diagnóstico por imagen , Cuerpo Estriado/diagnóstico por imagen , Método Doble Ciego , Humanos , Aprendizaje/efectos de los fármacos , Aprendizaje/fisiología , Imagen por Resonancia Magnética/métodos , Mesencéfalo/diagnóstico por imagen , Desempeño Psicomotor/efectos de los fármacos , Desempeño Psicomotor/fisiología , Tiempo de Reacción/efectos de los fármacos , Tiempo de Reacción/fisiología
14.
Life Sci Alliance ; 3(5)2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32303588

RESUMEN

Human cerebral organoid (hCO) models offer the opportunity to understand fundamental processes underlying human-specific cortical development and pathophysiology in an experimentally tractable system. Although diverse methods to generate brain organoids have been developed, a major challenge has been the production of organoids with reproducible cell type heterogeneity and macroscopic morphology. Here, we have directly addressed this problem by establishing a robust production pipeline to generate morphologically consistent hCOs and achieve a success rate of >80%. These hCOs include both a radial glial stem cell compartment and electrophysiologically competent mature neurons. Moreover, we show using immunofluorescence microscopy and single-cell profiling that individual organoids display reproducible cell type compositions that are conserved upon extended culture. We expect that application of this method will provide new insights into brain development and disease processes.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Organoides/crecimiento & desarrollo , Células Madre Pluripotentes/metabolismo , Encéfalo/citología , Encéfalo/metabolismo , Diferenciación Celular/fisiología , Femenino , Humanos , Células Madre Pluripotentes Inducidas/citología , Masculino , Células-Madre Neurales/citología , Neurogénesis/fisiología , Organoides/citología , Células Madre Pluripotentes/citología
15.
Sci Rep ; 10(1): 4566, 2020 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-32165725

RESUMEN

Peripheral biomarker and post-mortem brains studies have shown alterations of neuronal calcium sensor 1 (Ncs-1) expression in people with bipolar disorder or schizophrenia. However, its engagement by psychiatric medications and potential contribution to behavioral regulation remains elusive. We investigated the effect on Ncs-1 expression of valproic acid (VPA), a mood stabilizer used for the management of bipolar disorder. Treatment with VPA induced Ncs-1 gene expression in cell line while chronic administration of this drug to mice increased both Ncs-1 protein and mRNA levels in the mouse frontal cortex. Inhibition of histone deacetylases (HDACs), a known biochemical effect of VPA, did not alter the expression of Ncs-1. In contrast, pharmacological inhibition or genetic downregulation of glycogen synthase kinase 3ß (Gsk3ß) increased Ncs-1 expression, whereas overexpression of a constitutively active Gsk3ß had the opposite effect. Moreover, adeno-associated virus-mediated Ncs-1 overexpression in mouse frontal cortex caused responses similar to those elicited by VPA or lithium in tests evaluating social and mood-related behaviors. These findings indicate that VPA increases frontal cortex Ncs-1 gene expression as a result of Gsk3 inhibition. Furthermore, behavioral changes induced by Ncs-1 overexpression support a contribution of this mechanism in the regulation of behavior by VPA and potentially other psychoactive medications inhibiting Gsk3 activity.


Asunto(s)
Ansiedad/inducido químicamente , Lóbulo Frontal/metabolismo , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Proteínas Sensoras del Calcio Neuronal/genética , Proteínas Sensoras del Calcio Neuronal/metabolismo , Neuropéptidos/genética , Neuropéptidos/metabolismo , Ácido Valproico/efectos adversos , Animales , Ansiedad/genética , Ansiedad/metabolismo , Línea Celular , Modelos Animales de Enfermedad , Regulación hacia Abajo , Glucógeno Sintasa Quinasa 3 beta/genética , Células HEK293 , Humanos , Masculino , Ratones , Células PC12 , Ratas , Conducta Social , Regulación hacia Arriba , Ácido Valproico/administración & dosificación
16.
Pharmacol Rev ; 71(3): 383-412, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31243157

RESUMEN

5-HT3 receptor antagonists, first introduced to the market in the mid-1980s, are proven efficient agents to counteract chemotherapy-induced emesis. Nonetheless, recent investigations have shed light on unappreciated dimensions of this class of compounds in conditions with an immunoinflammatory component as well as in neurologic and psychiatric disorders. The promising findings from multiple studies have unveiled several beneficial effects of these compounds in multiple sclerosis, stroke, Alzheimer disease, and Parkinson disease. Reports continue to uncover important roles for 5-HT3 receptors in the physiopathology of neuropsychiatric disorders, including depression, anxiety, drug abuse, and schizophrenia. This review addresses the potential of 5-HT3 receptor antagonists in neurology- and neuropsychiatry-related disorders. The broad therapeutic window and high compliance observed with these agents position them as suitable prototypes for the development of novel pharmacotherapeutics with higher efficacy and fewer adverse effects.


Asunto(s)
Trastornos Mentales/tratamiento farmacológico , Enfermedades del Sistema Nervioso/tratamiento farmacológico , Antagonistas del Receptor de Serotonina 5-HT3/farmacología , Antagonistas del Receptor de Serotonina 5-HT3/uso terapéutico , Animales , Humanos , Trastornos Mentales/metabolismo , Enfermedades del Sistema Nervioso/metabolismo , Receptores de Serotonina 5-HT3/metabolismo
17.
Cell Rep ; 26(6): 1473-1488.e9, 2019 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-30726732

RESUMEN

Phosphorylation of heptahelical receptors is thought to regulate G protein signaling, receptor endocytosis, and non-canonical signaling via recruitment of ß-arrestins. We investigated chemokine receptor functionality under phosphorylation-deficient and ß-arrestin-deficient conditions by studying interneuron migration in the embryonic cortex. This process depends on CXCL12, CXCR4, G protein signaling and on the atypical CXCL12 receptor ACKR3. We found that phosphorylation was crucial, whereas ß-arrestins were dispensable for ACKR3-mediated control of CXCL12 levels in vivo. Cortices of mice expressing phosphorylation-deficient ACKR3 exhibited a major interneuron migration defect, which was accompanied by excessive activation and loss of CXCR4. Cxcl12-overexpressing mice mimicked this phenotype. Excess CXCL12 caused lysosomal CXCR4 degradation, loss of CXCR4 responsiveness, and, ultimately, similar motility defects as Cxcl12 deficiency. By contrast, ß-arrestin deficiency caused only a subtle migration defect mimicked by CXCR4 gain of function. These findings demonstrate that phosphorylation regulates atypical chemokine receptor function without ß-arrestin involvement in chemokine sequestration and non-canonical signaling.


Asunto(s)
Movimiento Celular , Interneuronas/metabolismo , Receptores CXCR/metabolismo , Animales , Células CHO , Quimiocina CXCL12/metabolismo , Cricetinae , Cricetulus , Células HEK293 , Humanos , Interneuronas/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Fosforilación , Receptores CXCR/genética , beta-Arrestinas/metabolismo
18.
Behav Neurosci ; 133(1): 135-143, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30688489

RESUMEN

Akt protein family (Akt1, Akt2 and Akt3) of serine/threonine kinases, also known as protein kinase B, are enzymes implicated in many physiological and pathological processes in the central nervous system. A striking feature of these enzymes is their ability to interact with several molecular targets such as the glycogen synthase kinase 3 (GSK-3). Among Akt isoforms, the Akt3 is significantly more expressed in the brain and the present investigation was designed to determine whether the Akt3/GSK-3 pathway plays a role in the learning of a complex motor skill. Using the accelerating rotarod task, known to reproduce different motor learning phases, we demonstrated in mouse models that genetic deletion of GSK-3α or GSK-3ß had no effect on rotarod performances. However, Akt3 deletion robustly compromised rotarod learning when compared with wild-type animals. Biochemical analysis in the striatum revealed modifications in the levels of both phosphorylated GSK-3 and tau in Akt3-deficient mice, which are reminiscent of enhanced GSK-3 activity. In this line, we observed that both biochemical and motor learning impairments were prevented in Akt3-deficent mice by chronic treatments with lithium, a well-known GSK-3 inhibitor. Altogether, our findings raised the interesting possibility that interconnection between Akt3 and GSK-3 kinases is required in the learning of new complex motor tasks. (PsycINFO Database Record (c) 2019 APA, all rights reserved).


Asunto(s)
Cuerpo Estriado/metabolismo , Glucógeno Sintasa Quinasa 3 beta/fisiología , Glucógeno Sintasa Quinasa 3/fisiología , Aprendizaje/fisiología , Destreza Motora , Animales , Femenino , Glucógeno Sintasa Quinasa 3/genética , Glucógeno Sintasa Quinasa 3 beta/genética , Masculino , Ratones Noqueados , Prueba de Desempeño de Rotación con Aceleración Constante , Transducción de Señal
19.
Pharmacol Res ; 139: 440-445, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30528973

RESUMEN

The dopamine D2 receptor (DRD2) remains the principal target of antipsychotic drugs used for the management of schizophrenia and other psychotic disorders. This receptor is highly expressed within the basal ganglia, more specifically the striatal caudate nucleus and the nucleus accumbens. The general functions, signaling and behavioral contributions of striatal DRD2 are well understood. However, the study of cortical DRD2 expression and functions has for the most part been restricted to a subset of pyramidal neurons and interneurons (e.g. parvalbumine positive) of the pre frontal cortex where DRD2 regulated local circuits are believed to contribute to the regulation of emotional and cognitive functions. The further investigations of cortical DRD2 functions have been hindered by relatively low receptor expression and the sensitivity of detection methods. Here we report recent findings by our group using high sensitivity approaches to map cortical DRD2 expression. Results from these investigations revealed different scales of heterogeneity within DRD2 expressing neurons. These variations affected the types of neurons expressing DRD2 as well as the co-expression of DRD2 with other receptors across several cortical regions. Furthermore several cortical regions showing higher clusters of DRD2 expressing neurons are involved in the regulation of emotional, cognitive and sensory functions that can be involved in the expression of psychotic symptoms. These findings underscore the need for a reexamination of cortical DRD2 mediated synaptic plasticity in the context of schizophrenia and other psychotic disorders.


Asunto(s)
Neuronas/metabolismo , Receptores de Dopamina D2/metabolismo , Animales , Humanos
20.
Cereb Cortex ; 29(9): 3813-3827, 2019 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-30295716

RESUMEN

Cortical D2 dopamine receptor (Drd2) have mostly been examined in the context of cognitive function regulation and neurotransmission modulation of medial prefrontal cortex by principal neurons and parvalbumin positive, fast-spiking, interneurons in schizophrenia. Early studies suggested the presence of D2 receptors in several cortical areas, albeit with major technical limitations. We used combinations of transgenic reporter systems, recombinase activated viral vectors, quantitative translatome analysis, and high sensitivity in situ hybridization to identify D2 receptor expressing cells and establish a map of their respective projections. Our results identified previously uncharacterized clusters of D2 expressing neurons in limbic and sensory regions of the adult mouse brain cortex. Characterization of these clusters by translatome analysis and cell type specific labeling revealed highly heterogeneous expression of D2 receptors in principal neurons and various populations of interneurons across cortical areas. Transcript enrichment analysis also demonstrated variable levels of D2 receptor expression and several orphan G-protein-coupled receptors coexpression in different neuronal clusters, thus suggesting strategies for genetic and therapeutic targeting of D2 expressing neurons in specific cortical areas. These results pave the way for a thorough re-examination of cortical D2 receptor functions, which could provide information about neuronal circuits involved in psychotic and mood disorders.


Asunto(s)
Encéfalo/metabolismo , Neuronas/metabolismo , Receptores de Dopamina D2/metabolismo , Animales , Ratones Transgénicos , Vías Nerviosas/metabolismo , ARN Mensajero/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...