Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
ACS Nano ; 18(22): 14661-14671, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38780137

RESUMEN

Combining integrated optical platforms with solution-processable materials offers a clear path toward miniaturized and robust light sources, including lasers. A limiting aspect for red-emitting materials remains the drop in efficiency at high excitation density due to non-radiative quenching pathways, such as Auger recombination. Next to this, lasers based on such materials remain ill characterized, leaving questions about their ultimate performance. Here, we show that colloidal quantum shells (QSs) offer a viable solution for a processable material platform to circumvent these issues. We first show that optical gain in QSs is mediated by a 2D plasma state of unbound electron-hole pairs, opposed to bound excitons, which gives rise to broad-band and sizable gain across the full red spectrum with record gain lifetimes and a low threshold. Moreover, at high excitation density, the emission efficiency of the plasma state does not quench, a feat we can attribute to an increased radiative recombination rate. Finally, QSs are integrated on a silicon nitride platform, enabling high spectral contrast, surface emitting, and TE-polarized lasers with ultranarrow beam divergence across the entire red spectrum from a small surface area. Our results indicate QS materials are an excellent materials platform to realize highly performant and compact on-chip light sources.

2.
Chem Commun (Camb) ; 59(76): 11337-11348, 2023 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-37676487

RESUMEN

Colloidal semiconductor nanocrystals (NCs) have attracted a great deal of attention in recent decades. The quantum efficiency of many optoelectronic processes based on these nanomaterials, however, declines with increasing optical or electrical excitation intensity. This issue is caused by Auger recombination of multiple excitons, which converts the NC energy into excess heat, whereby reducing the efficiency and lifespan of NC-based devices, including lasers, photodetectors, X-ray scintillators, and high-brightness LEDs. Recently, semiconductor quantum shells (QSs) have emerged as a viable nanoscale architecture for the suppression of Auger decay. The spherical-shell geometry of these nanostructures leads to a significant reduction of Auger decay rates, while exhibiting a near unity photoluminescence quantum yield. Here, we compare the optoelectronic properties of quantum shells against other low-dimensional semiconductors and discuss their emerging opportunities in solid-state lighting and energy-harvesting applications.

3.
J Am Chem Soc ; 145(24): 13326-13334, 2023 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-37279071

RESUMEN

Many optoelectronic processes in colloidal semiconductor nanocrystals (NCs) suffer an efficiency decline under high-intensity excitation. This issue is caused by Auger recombination of multiple excitons, which converts the NC energy into excess heat, reducing the efficiency and life span of NC-based devices, including photodetectors, X-ray scintillators, lasers, and high-brightness light-emitting diodes (LEDs). Recently, semiconductor quantum shells (QSs) have emerged as a promising NC geometry for the suppression of Auger decay; however, their optoelectronic performance has been hindered by surface-related carrier losses. Here, we address this issue by introducing quantum shells with a CdS-CdSe-CdS-ZnS core-shell-shell-shell multilayer structure. The ZnS barrier inhibits the surface carrier decay, which increases the photoluminescence (PL) quantum yield (QY) to 90% while retaining a high biexciton emission QY of 79%. The improved QS morphology allows demonstrating one of the longest Auger lifetimes reported for colloidal NCs to date. The reduction of nonradiative losses in QSs also leads to suppressed blinking in single nanoparticles and low-threshold amplified spontaneous emission. We expect that ZnS-encapsulated quantum shells will benefit many applications exploiting high-power optical or electrical excitation regimes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...