Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
2.
J Bioenerg Biomembr ; 56(2): 87-99, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38374292

RESUMEN

High-fat diet-induced metabolic changes are not restricted to the onset of cardiovascular diseases, but also include effects on brain functions related to learning and memory. This study aimed to evaluate mitochondrial markers and function, as well as cognitive function, in a rat model of metabolic dysfunction. Eight-week-old male Wistar rats were subjected to either a control diet or a two-hit protocol combining a high fat diet (HFD) with the nitric oxide synthase inhibitor L-NAME in the drinking water. HFD plus L-NAME induced obesity, hypertension, and increased serum cholesterol. These rats exhibited bioenergetic dysfunction in the hippocampus, characterized by decreased oxygen (O2) consumption related to ATP production, with no changes in H2O2 production. Furthermore, OPA1 protein expression was upregulated in the hippocampus of HFD + L-NAME rats, with no alterations in other morphology-related proteins. Consistently, HFD + L-NAME rats showed disruption of performance in the Morris Water Maze Reference Memory test. The neocortex did not exhibit either bioenergetic changes or alterations in H2O2 production. Calcium uptake rate and retention capacity in the neocortex of HFD + L-NAME rats were not altered. Our results indicate that hippocampal mitochondrial bioenergetic function is disturbed in rats exposed to a HFD plus L-NAME, thus disrupting spatial learning, whereas neocortical function remains unaffected.


Asunto(s)
Dieta Alta en Grasa , Memoria Espacial , Ratas , Animales , Masculino , Dieta Alta en Grasa/efectos adversos , Ratas Wistar , NG-Nitroarginina Metil Éster/farmacología , NG-Nitroarginina Metil Éster/metabolismo , Peróxido de Hidrógeno/metabolismo , Aprendizaje por Laberinto , Hipocampo/metabolismo , Mitocondrias/metabolismo
3.
Eur Heart J ; 44(44): 4696-4712, 2023 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-37944136

RESUMEN

BACKGROUND AND AIMS: Developing novel therapies to battle the global public health burden of heart failure remains challenging. This study investigates the underlying mechanisms and potential treatment for 4-hydroxynonenal (4-HNE) deleterious effects in heart failure. METHODS: Biochemical, functional, and histochemical measurements were applied to identify 4-HNE adducts in rat and human failing hearts. In vitro studies were performed to validate 4-HNE targets. RESULTS: 4-HNE, a reactive aldehyde by-product of mitochondrial dysfunction in heart failure, covalently inhibits Dicer, an RNase III endonuclease essential for microRNA (miRNA) biogenesis. 4-HNE inhibition of Dicer impairs miRNA processing. Mechanistically, 4-HNE binds to recombinant human Dicer through an intermolecular interaction that disrupts both activity and stability of Dicer in a concentration- and time-dependent manner. Dithiothreitol neutralization of 4-HNE or replacing 4-HNE-targeted residues in Dicer prevents 4-HNE inhibition of Dicer in vitro. Interestingly, end-stage human failing hearts from three different heart failure aetiologies display defective 4-HNE clearance, decreased Dicer activity, and miRNA biogenesis impairment. Notably, boosting 4-HNE clearance through pharmacological re-activation of mitochondrial aldehyde dehydrogenase 2 (ALDH2) using Alda-1 or its improved orally bioavailable derivative AD-9308 restores Dicer activity. ALDH2 is a major enzyme responsible for 4-HNE removal. Importantly, this response is accompanied by improved miRNA maturation and cardiac function/remodelling in a pre-clinical model of heart failure. CONCLUSIONS: 4-HNE inhibition of Dicer directly impairs miRNA biogenesis in heart failure. Strikingly, decreasing cardiac 4-HNE levels through pharmacological ALDH2 activation is sufficient to re-establish Dicer activity and miRNA biogenesis; thereby representing potential treatment for patients with heart failure.


Asunto(s)
Insuficiencia Cardíaca , MicroARNs , Humanos , Ratas , Animales , MicroARNs/metabolismo , Ribonucleasa III/genética , Ribonucleasa III/metabolismo , Aldehídos/metabolismo , Aldehídos/farmacología , Procesamiento Proteico-Postraduccional , Aldehído Deshidrogenasa Mitocondrial/genética
4.
Int J Mol Sci ; 24(4)2023 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-36835047

RESUMEN

In clinical conditions such as diaphragm paralysis or mechanical ventilation, disuse-induced diaphragmatic dysfunction (DIDD) is a condition that poses a threat to life. MuRF1 is a key E3-ligase involved in regulating skeletal muscle mass, function, and metabolism, which contributes to the onset of DIDD. We investigated if the small-molecule mediated inhibition of MuRF1 activity (MyoMed-205) protects against early DIDD after 12 h of unilateral diaphragm denervation. Wistar rats were used in this study to determine the compound's acute toxicity and optimal dosage. For potential DIDD treatment efficacy, diaphragm contractile function and fiber cross-sectional area (CSA) were evaluated. Western blotting investigated potential mechanisms underlying MyoMed-205's effects in early DIDD. Our results indicate 50 mg/kg bw MyoMed-205 as a suitable dosage to prevent early diaphragmatic contractile dysfunction and atrophy following 12 h of denervation without detectable signs of acute toxicity. Mechanistically, treatment did not affect disuse-induced oxidative stress (4-HNE) increase, whereas phosphorylation of (ser632) HDAC4 was normalized. MyoMed-205 also mitigated FoxO1 activation, inhibited MuRF2, and increased phospho (ser473) Akt protein levels. These findings may suggest that MuRF1 activity significantly contributes to early DIDD pathophysiology. Novel strategies targeting MuRF1 (e.g., MyoMed-205) have potential therapeutic applications for treating early DIDD.


Asunto(s)
Diafragma , Atrofia Muscular , Proteínas de Motivos Tripartitos , Ubiquitina-Proteína Ligasas , Animales , Ratas , Diafragma/metabolismo , Diafragma/patología , Atrofia Muscular/metabolismo , Estrés Oxidativo , Ratas Wistar , Respiración Artificial/efectos adversos , Ubiquitina-Proteína Ligasas/antagonistas & inhibidores , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas de Motivos Tripartitos/antagonistas & inhibidores , Proteínas de Motivos Tripartitos/metabolismo
5.
Autophagy ; 18(10): 2397-2408, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35220898

RESUMEN

Mutations in the mitochondrial genome (mtDNA) are ubiquitous in humans and can lead to a broad spectrum of disorders. However, due to the presence of multiple mtDNA molecules in the cell, co-existence of mutant and wild-type mtDNAs (termed heteroplasmy) can mask disease phenotype unless a threshold of mutant molecules is reached. Importantly, the mutant mtDNA level can change across lifespan as mtDNA segregates in an allele- and cell-specific fashion, potentially leading to disease. Segregation of mtDNA is mainly evident in hepatic cells, resulting in an age-dependent increase of mtDNA variants, including non-synonymous potentially deleterious mutations. Here we modeled mtDNA segregation using a well-established heteroplasmic mouse line with mtDNA of NZB/BINJ and C57BL/6N origin on a C57BL/6N nuclear background. This mouse line showed a pronounced age-dependent NZB mtDNA accumulation in the liver, thus leading to enhanced respiration capacity per mtDNA molecule. Remarkably, liver-specific atg7 (autophagy related 7) knockout abolished NZB mtDNA accumulat ion, resulting in close-to-neutral mtDNA segregation through development into adulthood. prkn (parkin RBR E3 ubiquitin protein ligase) knockout also partially prevented NZB mtDNA accumulation in the liver, but to a lesser extent. Hence, we propose that age-related liver mtDNA segregation is a consequence of macroautophagic clearance of the less-fit mtDNA. Considering that NZB/BINJ and C57BL/6N mtDNAs have a level of divergence comparable to that between human Eurasian and African mtDNAs, these findings have potential implications for humans, including the safe use of mitochondrial replacement therapy.Abbreviations: Apob: apolipoprotein B; Atg1: autophagy-related 1; Atg7: autophagy related 7; Atp5a1: ATP synthase, H+ transporting, mitochondrial F1 complex, alpha subunit 1; BL6: C57BL/6N mouse strain; BNIP3: BCL2/adenovirus E1B interacting protein 3; FCCP: carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; MAP1LC3A: microtubule-associated protein 1 light chain 3 alpha; MAP1LC3B: microtubule-associated protein 1 light chain 3 beta; mt-Atp8: mitochondrially encoded ATP synthase 8; MT-CO1: mitochondrially encoded cytochrome c oxidase I; MT-CO2: mitochondrially encoded cytochrome c oxidase II; mt-Co3: mitochondrially encoded cytochrome c oxidase III; mt-Cytb: mitochondrially encoded cytochrome b; mtDNA: mitochondrial DNA; MUL1: mitochondrial ubiquitin ligase activator of NFKB 1; nDNA: nuclear DNA; Ndufa9: NADH:ubiquinone oxireductase subunit A9; NDUFB8: NADH:ubiquinone oxireductase subunit B8; Nnt: nicotinamide nucleotide transhydrogenase; NZB: NZB/BINJ mouse strain; OXPHOS: oxidative phosphorylation; PINK1: PTEN induced putative kinase 1; Polg2: polymerase (DNA directed), gamma 2, accessory subunit; Ppara: peroxisome proliferator activated receptor alpha; Ppia: peptidylprolyl isomerase A; Prkn: parkin RBR E3 ubiquitin protein ligase; P10: post-natal day 10; P21: post-natal day 21; P100: post-natal day 100; qPCR: quantitative polymerase chain reaction; Rpl19: ribosomal protein L19; Rps18: ribosomal protein S18; SD: standard deviation; SEM: standard error of the mean; SDHB: succinate dehydrogenase complex, subunit B, iron sulfur (Ip); SQSTM1: sequestosome 1; Ssbp1: single-stranded DNA binding protein 1; TFAM: transcription factor A, mitochondrial; Tfb1m: transcription factor B1, mitochondrial; Tfb2m: transcription factor B2, mitochondrial; TOMM20: translocase of outer mitochondrial membrane 20; UQCRC2: ubiquinol cytochrome c reductase core protein 2; WT: wild-type.


Asunto(s)
Mitofagia , NADP Transhidrogenasas , Adenosina Trifosfato , Adulto , Animales , Apolipoproteínas/metabolismo , Apolipoproteínas B/metabolismo , Autofagia/genética , Dióxido de Carbono/metabolismo , Carbonil Cianuro p-Trifluorometoxifenil Hidrazona , Citocromos b/metabolismo , ADN Mitocondrial/genética , Proteínas de Unión al ADN/metabolismo , Complejo III de Transporte de Electrones , Complejo IV de Transporte de Electrones/metabolismo , Humanos , Hierro/metabolismo , Hígado/metabolismo , Ratones , Ratones Endogámicos C57BL , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Mitocondriales , NAD/metabolismo , NADP Transhidrogenasas/metabolismo , PPAR alfa/metabolismo , Isomerasa de Peptidilprolil/metabolismo , Proteínas Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Proteínas Ribosómicas/metabolismo , Proteína Sequestosoma-1/metabolismo , Succinato Deshidrogenasa/metabolismo , Azufre/metabolismo , Factores de Transcripción/metabolismo , Ubiquinona , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinas/metabolismo
6.
Cells ; 11(3)2022 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-35159195

RESUMEN

Intracellular peptides (InPeps) generated by proteasomes were previously suggested as putative natural regulators of protein-protein interactions (PPI). Here, the main aim was to investigate the intracellular effects of intracellular peptide VFDVELL (VFD7) and related peptides on PPI. The internalization of the peptides was achieved using a C-terminus covalently bound cell-penetrating peptide (cpp; YGRKKRRQRRR). The possible inhibition of PPI was investigated using a NanoBiT® luciferase structural complementation reporter system, with a pair of plasmids vectors each encoding, simultaneously, either FK506-binding protein (FKBP) or FKBP-binding domain (FRB) of mechanistic target of rapamycin complex 1 (mTORC1). The interaction of FKBP-FRB within cells occurs under rapamycin induction. Results shown that rapamycin-induced interaction between FKBP-FRB within human embryonic kidney 293 (HEK293) cells was inhibited by VFD7-cpp (10-500 nM) and FDVELLYGRKKRRQRRR (VFD6-cpp; 1-500 nM); additional VFD7-cpp derivatives were either less or not effective in inhibiting FKBP-FRB interaction induced by rapamycin. Molecular dynamics simulations suggested that selected peptides, such as VFD7-cpp, VFD6-cpp, VFAVELLYGRKKKRRQRRR (VFA7-cpp), and VFEVELLYGRKKKRRQRRR (VFA7-cpp), bind to FKBP and to FRB protein surfaces. However, only VFD7-cpp and VFD6-cpp induced changes on FKBP structure, which could help with understanding their mechanism of PPI inhibition. InPeps extracted from HEK293 cells were found mainly associated with macromolecular components (i.e., proteins and/or nucleic acids), contributing to understanding InPeps' intracellular proteolytic stability and mechanism of action-inhibiting PPI within cells. In a model of cell death induced by hypoxia-reoxygenation, VFD6-cpp (1 µM) increased the viability of mouse embryonic fibroblasts cells (MEF) expressing mTORC1-regulated autophagy-related gene 5 (Atg5), but not in autophagy-deficient MEF cells lacking the expression of Atg5. These data suggest that VFD6-cpp could have therapeutic applications reducing undesired side effects of rapamycin long-term treatments. In summary, the present report provides further evidence that InPeps have biological significance and could be valuable tools for the rational design of therapeutic molecules targeting intracellular PPI.


Asunto(s)
Sirolimus , Proteína 1A de Unión a Tacrolimus , Animales , Autofagia , Fibroblastos/metabolismo , Células HEK293 , Humanos , Diana Mecanicista del Complejo 1 de la Rapamicina , Ratones , Péptidos/farmacología , Sirolimus/farmacología , Tacrolimus , Proteína 1A de Unión a Tacrolimus/metabolismo , Proteínas de Unión a Tacrolimus/metabolismo
7.
FASEB J ; 35(7): e21714, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34118107

RESUMEN

We tested the hypothesis that cancer cachexia progression would induce oxidative post-translational modifications (Ox-PTMs) associated with skeletal muscle wasting, with different responses in muscles with the prevalence of glycolytic and oxidative fibers. We used cysteine-specific isotopic coded affinity tags (OxICAT) and gel-free mass spectrometry analysis to investigate the cysteine Ox-PTMs profile in the proteome of both plantaris (glycolytic) and soleus (oxidative) muscles in tumor-bearing and control rats. Histological analysis revealed muscle atrophy in type II fibers in plantaris muscle, with no changes in plantaris type I fibers and no differences in both soleus type I and II fibers in tumor-bearing rats when compared to healthy controls. Tumor progression altered the Ox-PTMs profile in both plantaris and soleus. However, pathway analysis including the differentially oxidized proteins revealed tricarboxylic acid cycle and oxidative phosphorylation as main affected pathways in plantaris muscle from tumor-bearing rats, while the same analysis did not show main metabolic pathways affected in the soleus muscle. In addition, cancer progression affected several metabolic parameters such as ATP levels and markers of oxidative stress associated with muscle atrophy in plantaris muscle, but not in soleus. However, isolated soleus from tumor-bearing rats had a reduced force production capacity when compared to controls. These novel findings demonstrate that tumor-bearing rats have severe muscle atrophy exclusively in glycolytic fibers. Cancer progression is associated with cysteine Ox-PTMs in the skeletal muscle, but these modifications affect different pathways in a glycolytic muscle compared to an oxidative muscle, indicating that intrinsic muscle oxidative capacity determines the response to cancer cachectic effects.


Asunto(s)
Músculo Esquelético/patología , Atrofia Muscular/patología , Neoplasias/patología , Estrés Oxidativo/fisiología , Animales , Caquexia/patología , Progresión de la Enfermedad , Glucólisis/fisiología , Masculino , Fibras Musculares de Contracción Rápida/patología , Fibras Musculares de Contracción Lenta/patología , Oxidación-Reducción , Fosforilación Oxidativa , Ratas , Ratas Wistar
8.
Mol Metab ; 39: 101012, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32408015

RESUMEN

OBJECTIVE: We tested the hypothesis that exercise training would attenuate metabolic impairment in a model of severe cancer cachexia. METHODS: We used multiple in vivo and in vitro methods to explore the mechanisms underlying the beneficial effects induced by exercise training in tumor-bearing rats. RESULTS: Exercise training improved running capacity, prolonged lifespan, reduced oxidative stress, and normalized muscle mass and contractile function in tumor-bearing rats. An unbiased proteomic screening revealed COP9 signalosome complex subunit 2 (COPS2) as one of the most downregulated proteins in skeletal muscle at the early stage of cancer cachexia. Exercise training normalized muscle COPS2 protein expression in tumor-bearing rats and mice. Lung cancer patients with low endurance capacity had low muscle COPS2 protein expression as compared to age-matched control subjects. To test whether decrease in COPS2 protein levels could aggravate or be an intrinsic compensatory mechanism to protect myotubes from cancer effects, we performed experiments in vitro using primary myotubes. COPS2 knockdown in human myotubes affected multiple cellular pathways, including regulation of actin cytoskeleton. Incubation of cancer-conditioned media in mouse myotubes decreased F-actin expression, which was partially restored by COPS2 knockdown. Direct repeat 4 (DR4) response elements have been shown to positively regulate gene expression. COPS2 overexpression decreased the DR4 activity in mouse myoblasts, and COPS2 knockdown inhibited the effects of cancer-conditioned media on DR4 activity. CONCLUSIONS: These studies demonstrated that exercise training may be an important adjuvant therapy to counteract cancer cachexia and uncovered novel mechanisms involving COPS2 to regulate myotube homeostasis in cancer cachexia.


Asunto(s)
Complejo del Señalosoma COP9/metabolismo , Músculo Esquelético/metabolismo , Neoplasias/metabolismo , Estrés Oxidativo , Condicionamiento Físico Animal , Proteínas Represoras/metabolismo , Animales , Biomarcadores , Complejo del Señalosoma COP9/genética , Caquexia/etiología , Caquexia/metabolismo , Línea Celular Tumoral , Citocinas/metabolismo , Modelos Animales de Enfermedad , Metabolismo Energético , Técnicas de Silenciamiento del Gen , Humanos , Masculino , Ratones , Fibras Musculares Esqueléticas/metabolismo , Atrofia Muscular/etiología , Atrofia Muscular/metabolismo , Mioblastos/metabolismo , Neoplasias/complicaciones , Oxidación-Reducción , Proteómica/métodos , Ratas , Receptores del Ligando Inductor de Apoptosis Relacionado con TNF/genética , Receptores del Ligando Inductor de Apoptosis Relacionado con TNF/metabolismo , Proteínas Represoras/genética , Transducción de Señal
9.
Nat Commun ; 10(1): 329, 2019 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-30659190

RESUMEN

We previously demonstrated that beta II protein kinase C (ßIIPKC) activity is elevated in failing hearts and contributes to this pathology. Here we report that ßIIPKC accumulates on the mitochondrial outer membrane and phosphorylates mitofusin 1 (Mfn1) at serine 86. Mfn1 phosphorylation results in partial loss of its GTPase activity and in a buildup of fragmented and dysfunctional mitochondria in heart failure. ßIIPKC siRNA or a ßIIPKC inhibitor mitigates mitochondrial fragmentation and cell death. We confirm that Mfn1-ßIIPKC interaction alone is critical in inhibiting mitochondrial function and cardiac myocyte viability using SAMßA, a rationally-designed peptide that selectively antagonizes Mfn1-ßIIPKC association. SAMßA treatment protects cultured neonatal and adult cardiac myocytes, but not Mfn1 knockout cells, from stress-induced death. Importantly, SAMßA treatment re-establishes mitochondrial morphology and function and improves cardiac contractility in rats with heart failure, suggesting that SAMßA may be a potential treatment for patients with heart failure.


Asunto(s)
Insuficiencia Cardíaca/tratamiento farmacológico , Proteínas de la Membrana/antagonistas & inhibidores , Proteínas Mitocondriales/antagonistas & inhibidores , Péptidos/farmacología , Proteína Quinasa C beta/antagonistas & inhibidores , Animales , GTP Fosfohidrolasas/metabolismo , Técnicas de Inactivación de Genes , Insuficiencia Cardíaca/metabolismo , Masculino , Membranas Mitocondriales/metabolismo , Contracción Miocárdica , Infarto del Miocardio/metabolismo , Infarto del Miocardio/patología , Miocitos Cardíacos/efectos de los fármacos , Fosforilación , ARN Interferente Pequeño , Ratas Wistar
10.
Sci Rep ; 8(1): 11818, 2018 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-30087400

RESUMEN

Increased proteolytic activity has been widely associated with skeletal muscle atrophy. However, elevated proteolysis is also critical for the maintenance of cellular homeostasis by disposing cytotoxic proteins and non-functioning organelles. We recently demonstrated that exercise activates autophagy and re-establishes proteostasis in cardiac diseases. Here, we characterized the impact of exercise on skeletal muscle autophagy and proteostasis in a model of neurogenic myopathy induced by sciatic nerve constriction in rats. Neurogenic myopathy, characterized by progressive atrophy and impaired contractility, was paralleled by accumulation of autophagy-related markers and loss of acute responsiveness to both colchicine and chloroquine. These changes were correlated with elevated levels of damaged proteins, chaperones and pro-apoptotic markers compared to control animals. Sustained autophagy inhibition using chloroquine in rats (50 mg.kg-1.day-1) or muscle-specific deletion of Atg7 in mice was sufficient to impair muscle contractility in control but not in neurogenic myopathy, suggesting that dysfunctional autophagy is critical in skeletal muscle pathophysiology. Finally, 4 weeks of aerobic exercise training (moderate treadmill running, 5x/week, 1 h/day) prior to neurogenic myopathy improved skeletal muscle autophagic flux and proteostasis. These changes were followed by spared muscle mass and better contractility properties. Taken together, our findings suggest the potential value of exercise in maintaining skeletal muscle proteostasis and slowing down the progression of neurogenic myopathy.


Asunto(s)
Autofagia/fisiología , Enfermedades Neuromusculares/fisiopatología , Condicionamiento Físico Animal/fisiología , Proteostasis/fisiología , Animales , Antirreumáticos/farmacología , Autofagia/genética , Cloroquina/farmacología , Masculino , Ratones Noqueados , Ratones Transgénicos , Contracción Muscular/efectos de los fármacos , Contracción Muscular/fisiología , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Atrofia Muscular/metabolismo , Atrofia Muscular/fisiopatología , Enfermedades Neuromusculares/genética , Enfermedades Neuromusculares/metabolismo , Proteolisis , Proteostasis/genética , Ratas Sprague-Dawley
11.
Life Sci ; 191: 46-51, 2017 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-29030088

RESUMEN

AIMS: The current study tested the hypotheses that 1) an acute bout of aerobic exercise impairs isolated skeletal muscle contractile properties and 2) N-acetylcysteine (a thiol antioxidant; NAC) administration can restore the impaired muscle contractility after exercise. MAIN METHODS: At rest or immediately after an acute bout of aerobic exercise, extensor digitorum longus (EDL) and soleus muscles from male Wistar rats were harvested for ex vivo skeletal muscle contraction experiments. Muscles from exercised animals were incubated in Krebs Ringer's buffer in absence or presence of 20mM of NAC. Force capacity and fatigue properties were evaluated. KEY FINDINGS: Exercised EDL and soleus displayed lower force production across various stimulation frequencies (p<0.001), indicating that skeletal muscle force production was impaired after an acute bout of exercise. However, NAC treatment restored the loss of force production in both EDL and soleus after fatiguing exercise (p<0.05). Additionally, NAC treatment increased relative force production at different time points during a fatigue-induced protocol, suggesting that NAC treatment mitigates fatigue induced by successive contractions. SIGNIFICANCE: NAC treatment improves force capacity and fatigue properties in ex vivo skeletal muscle from rats submitted to an acute bout of aerobic exercise.


Asunto(s)
Acetilcisteína/farmacología , Antioxidantes/farmacología , Contracción Muscular/efectos de los fármacos , Fatiga Muscular/efectos de los fármacos , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/fisiología , Animales , Masculino , Condicionamiento Físico Animal/efectos adversos , Ratas Wistar
12.
Autophagy ; 13(8): 1304-1317, 2017 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-28598232

RESUMEN

We previously reported that facilitating the clearance of damaged mitochondria through macroautophagy/autophagy protects against acute myocardial infarction. Here we characterize the impact of exercise, a safe strategy against cardiovascular disease, on cardiac autophagy and its contribution to mitochondrial quality control, bioenergetics and oxidative damage in a post-myocardial infarction-induced heart failure animal model. We found that failing hearts displayed reduced autophagic flux depicted by accumulation of autophagy-related markers and loss of responsiveness to chloroquine treatment at 4 and 12 wk after myocardial infarction. These changes were accompanied by accumulation of fragmented mitochondria with reduced O2 consumption, elevated H2O2 release and increased Ca2+-induced mitochondrial permeability transition pore opening. Of interest, disruption of autophagic flux was sufficient to decrease cardiac mitochondrial function in sham-treated animals and increase cardiomyocyte toxicity upon mitochondrial stress. Importantly, 8 wk of exercise training, starting 4 wk after myocardial infarction at a time when autophagy and mitochondrial oxidative capacity were already impaired, improved cardiac autophagic flux. These changes were followed by reduced mitochondrial number:size ratio, increased mitochondrial bioenergetics and better cardiac function. Moreover, exercise training increased cardiac mitochondrial number, size and oxidative capacity without affecting autophagic flux in sham-treated animals. Further supporting an autophagy mechanism for exercise-induced improvements of mitochondrial bioenergetics in heart failure, acute in vivo inhibition of autophagic flux was sufficient to mitigate the increased mitochondrial oxidative capacity triggered by exercise in failing hearts. Collectively, our findings uncover the potential contribution of exercise in restoring cardiac autophagy flux in heart failure, which is associated with better mitochondrial quality control, bioenergetics and cardiac function.


Asunto(s)
Autofagia , Insuficiencia Cardíaca/patología , Mitocondrias/metabolismo , Animales , Autofagia/genética , Línea Celular , Supervivencia Celular , Regulación hacia Abajo/genética , Masculino , Ratones , Mitocondrias/ultraestructura , Dinámicas Mitocondriales , Condicionamiento Físico Animal , Ratas Wistar
13.
J Appl Physiol (1985) ; 122(4): 817-827, 2017 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-28104751

RESUMEN

We have recently demonstrated that NADPH oxidase hyperactivity, NF-κB activation, and increased p38 phosphorylation lead to atrophy of glycolytic muscle in heart failure (HF). Aerobic exercise training (AET) is an efficient strategy to counteract skeletal muscle atrophy in this syndrome. Therefore, we tested whether AET would regulate muscle redox balance and protein degradation by decreasing NADPH oxidase hyperactivity and reestablishing NF-κB signaling, p38 phosphorylation, and proteasome activity in plantaris muscle of myocardial infarcted-induced HF (MI) rats. Thirty-two male Wistar rats underwent MI or fictitious surgery (SHAM) and were randomly assigned into untrained (UNT) and trained (T; 8 wk of AET on treadmill) groups. AET prevented HF signals and skeletal muscle atrophy in MI-T, which showed an improved exercise tolerance, attenuated cardiac dysfunction and increased plantaris fiber cross-sectional area. To verify the role of inflammation and redox imbalance in triggering protein degradation, circulating TNF-α levels, NADPH oxidase profile, NF-κB signaling, p38 protein levels, and proteasome activity were assessed. MI-T showed a reduced TNF-α levels, NADPH oxidase activity, and Nox2 mRNA expression toward SHAM-UNT levels. The rescue of NADPH oxidase activity induced by AET in MI rats was paralleled by reducing nuclear binding activity of the NF-κB, p38 phosphorylation, atrogin-1, mRNA levels, and 26S chymotrypsin-like proteasome activity. Taken together our data provide evidence for AET improving plantaris redox homeostasis in HF associated with a decreased NADPH oxidase, redox-sensitive proteins activation, and proteasome hyperactivity further preventing atrophy. These data reinforce the role of AET as an efficient therapy for muscle wasting in HF.NEW & NOTEWORTHY This study demonstrates, for the first time, the contribution of aerobic exercise training (AET) in decreasing muscle NADPH oxidase activity associated with reduced reactive oxygen species production and systemic inflammation, which diminish NF-κB overactivation, p38 phosphorylation, and ubiquitin proteasome system hyperactivity. These molecular changes counteract plantaris atrophy in trained myocardial infarction-induced heart failure rats. Our data provide new evidence into how AET may regulate protein degradation and thus prevent skeletal muscle atrophy.


Asunto(s)
Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/fisiopatología , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiopatología , NADPH Oxidasas/metabolismo , Condicionamiento Físico Animal/fisiología , Animales , Modelos Animales de Enfermedad , Prueba de Esfuerzo/métodos , Corazón/fisiología , Masculino , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/fisiología , Atrofia Muscular/metabolismo , Atrofia Muscular/fisiopatología , Infarto del Miocardio/metabolismo , Infarto del Miocardio/fisiopatología , FN-kappa B/metabolismo , Oxidación-Reducción , Fosforilación/fisiología , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteolisis , Ratas , Ratas Wistar , Transducción de Señal/fisiología , Factor de Necrosis Tumoral alfa/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
15.
Front Physiol ; 7: 479, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27818636

RESUMEN

Disruption of mitochondrial homeostasis is a hallmark of cardiac diseases. Therefore, maintenance of mitochondrial integrity through different surveillance mechanisms is critical for cardiomyocyte survival. In this review, we discuss the most recent findings on the central role of mitochondrial quality control processes including regulation of mitochondrial redox balance, aldehyde metabolism, proteostasis, dynamics, and clearance in cardiac diseases, highlighting their potential as therapeutic targets.

16.
Int J Cardiol ; 179: 129-38, 2015 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-25464432

RESUMEN

BACKGROUND/OBJECTIVES: We previously demonstrated that reducing cardiac aldehydic load by aldehyde dehydrogenase 2 (ALDH2), a mitochondrial enzyme responsible for metabolizing the major lipid peroxidation product, protects against acute ischemia/reperfusion injury and chronic heart failure. However, time-dependent changes in ALDH2 profile, aldehydic load and mitochondrial bioenergetics during progression of post-myocardial infarction (post-MI) cardiomyopathy are unknown and should be established to determine the optimal time window for drug treatment. METHODS: Here we characterized cardiac ALDH2 activity and expression, lipid peroxidation, 4-hydroxy-2-nonenal (4-HNE) adduct formation, glutathione pool and mitochondrial energy metabolism and H2O2 release during the 4 weeks after permanent left anterior descending (LAD) coronary artery occlusion in rats. RESULTS: We observed a sustained disruption of cardiac mitochondrial function during the progression of post-MI cardiomyopathy, characterized by >50% reduced mitochondrial respiratory control ratios and up to 2 fold increase in H2O2 release. Mitochondrial dysfunction was accompanied by accumulation of cardiac and circulating lipid peroxides and 4-HNE protein adducts and down-regulation of electron transport chain complexes I and V. Moreover, increased aldehydic load was associated with a 90% reduction in cardiac ALDH2 activity and increased glutathione pool. Further supporting an ALDH2 mechanism, sustained Alda-1 treatment (starting 24h after permanent LAD occlusion surgery) prevented aldehydic overload, mitochondrial dysfunction and improved ventricular function in post-MI cardiomyopathy rats. CONCLUSION: Taken together, our findings demonstrate a disrupted mitochondrial metabolism along with an insufficient cardiac ALDH2-mediated aldehyde clearance during the progression of ventricular dysfunction, suggesting a potential therapeutic value of ALDH2 activators during the progression of post-myocardial infarction cardiomyopathy.


Asunto(s)
Aldehído Deshidrogenasa/metabolismo , Benzamidas/uso terapéutico , Benzodioxoles/uso terapéutico , Cardiomiopatías/metabolismo , Progresión de la Enfermedad , Proteínas Mitocondriales/metabolismo , Infarto del Miocardio/metabolismo , Aldehído Deshidrogenasa Mitocondrial , Aldehídos/metabolismo , Animales , Benzamidas/farmacología , Benzodioxoles/farmacología , Cardiomiopatías/tratamiento farmacológico , Masculino , Infarto del Miocardio/tratamiento farmacológico , Ratas , Ratas Wistar
17.
Int J Cardiol ; 175(3): 499-507, 2014 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-25023789

RESUMEN

BACKGROUND: Skeletal muscle wasting is associated with poor prognosis and increased mortality in heart failure (HF) patients. Glycolytic muscles are more susceptible to catabolic wasting than oxidative ones. This is particularly important in HF since glycolytic muscle wasting is associated with increased levels of reactive oxygen species (ROS). However, the main ROS sources involved in muscle redox imbalance in HF have not been characterized. Therefore, we hypothesized that NADPH oxidases would be hyperactivated in the plantaris muscle of infarcted rats, contributing to oxidative stress and hyperactivation of the ubiquitin-proteasome system (UPS), ultimately leading to atrophy. METHODS: Rats were submitted to myocardial infarction (MI) or Sham surgery. Four weeks after surgery, MI and Sham groups underwent eight weeks of treatment with apocynin, a NADPH oxidase inhibitor, or placebo. NADPH oxidase activity, oxidative stress markers, NF-κB activity, p38 MAPK phosphorylation, mRNA and sarcolemmal protein levels of NADPH oxidase components, UPS activation and fiber cross-sectional area were assessed in the plantaris muscle. RESULTS: The plantaris of MI rats displayed atrophy associated with increased Nox2 mRNA and sarcolemmal protein levels, NADPH oxidase activity, ROS production, lipid hydroperoxides levels, NF-κB activity, p38 MAPK phosphorylation and UPS activation. NADPH oxidase inhibition by apocynin prevented MI-induced skeletal muscle atrophy by reducing ROS production, NF-κB hyperactivation, p38 MAPK phosphorylation and proteasomal hyperactivity. CONCLUSION: Our data provide evidence for NADPH oxidase hyperactivation as an important source of ROS production leading to plantaris atrophy in heart failure rats, suggesting that this enzyme complex plays key role in skeletal muscle wasting in HF.


Asunto(s)
Insuficiencia Cardíaca/enzimología , Glicoproteínas de Membrana/metabolismo , Músculo Esquelético/enzimología , Atrofia Muscular/enzimología , NADPH Oxidasas/metabolismo , Animales , Activación Enzimática/fisiología , Insuficiencia Cardíaca/patología , Masculino , Músculo Esquelético/patología , Atrofia Muscular/patología , NADPH Oxidasa 2 , Ratas , Ratas Wistar , Especies Reactivas de Oxígeno/metabolismo
18.
Cardiovasc Res ; 103(4): 498-508, 2014 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-24817685

RESUMEN

AIMS: We previously demonstrated that pharmacological activation of mitochondrial aldehyde dehydrogenase 2 (ALDH2) protects the heart against acute ischaemia/reperfusion injury. Here, we determined the benefits of chronic activation of ALDH2 on the progression of heart failure (HF) using a post-myocardial infarction model. METHODS AND RESULTS: We showed that a 6-week treatment of myocardial infarction-induced HF rats with a selective ALDH2 activator (Alda-1), starting 4 weeks after myocardial infarction at a time when ventricular remodelling and cardiac dysfunction were present, improved cardiomyocyte shortening, cardiac function, left ventricular compliance and diastolic function under basal conditions, and after isoproterenol stimulation. Importantly, sustained Alda-1 treatment showed no toxicity and promoted a cardiac anti-remodelling effect by suppressing myocardial hypertrophy and fibrosis. Moreover, accumulation of 4-hydroxynonenal (4-HNE)-protein adducts and protein carbonyls seen in HF was not observed in Alda-1-treated rats, suggesting that increasing the activity of ALDH2 contributes to the reduction of aldehydic load in failing hearts. ALDH2 activation was associated with improved mitochondrial function, including elevated mitochondrial respiratory control ratios and reduced H2O2 release. Importantly, selective ALDH2 activation decreased mitochondrial Ca(2+)-induced permeability transition and cytochrome c release in failing hearts. Further supporting a mitochondrial mechanism for ALDH2, Alda-1 treatment preserved mitochondrial function upon in vitro aldehydic load. CONCLUSIONS: Selective activation of mitochondrial ALDH2 is sufficient to improve the HF outcome by reducing the toxic effects of aldehydic overload on mitochondrial bioenergetics and reactive oxygen species generation, suggesting that ALDH2 activators, such as Alda-1, have a potential therapeutic value for treating HF patients.


Asunto(s)
Aldehído Deshidrogenasa/metabolismo , Insuficiencia Cardíaca/enzimología , Mitocondrias/enzimología , Proteínas Mitocondriales/metabolismo , Remodelación Ventricular/fisiología , Aldehído Deshidrogenasa Mitocondrial , Animales , Insuficiencia Cardíaca/fisiopatología , Masculino , Contracción Miocárdica/fisiología , Miocitos Cardíacos/enzimología , Ratas Wistar , Función Ventricular/fisiología
19.
J Cell Mol Med ; 18(6): 1087-97, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24629015

RESUMEN

Skeletal myopathy is a hallmark of heart failure (HF) and has been associated with a poor prognosis. HF and other chronic degenerative diseases share a common feature of a stressed system: sympathetic hyperactivity. Although beneficial acutely, chronic sympathetic hyperactivity is one of the main triggers of skeletal myopathy in HF. Considering that ß2 -adrenoceptors mediate the activity of sympathetic nervous system in skeletal muscle, we presently evaluated the contribution of ß2 -adrenoceptors for the morphofunctional alterations in skeletal muscle and also for exercise intolerance induced by HF. Male WT and ß2 -adrenoceptor knockout mice on a FVB genetic background (ß2 KO) were submitted to myocardial infarction (MI) or SHAM surgery. Ninety days after MI both WT and ß2 KO mice presented to cardiac dysfunction and remodelling accompanied by significantly increased norepinephrine and epinephrine plasma levels, exercise intolerance, changes towards more glycolytic fibres and vascular rarefaction in plantaris muscle. However, ß2 KO MI mice displayed more pronounced exercise intolerance and skeletal myopathy when compared to WT MI mice. Skeletal muscle atrophy of infarcted ß2 KO mice was paralleled by reduced levels of phosphorylated Akt at Ser 473 while increased levels of proteins related with the ubiquitin--proteasome system, and increased 26S proteasome activity. Taken together, our results suggest that lack of ß2 -adrenoceptors worsen and/or anticipate the skeletal myopathy observed in HF.


Asunto(s)
Insuficiencia Cardíaca/complicaciones , Músculo Esquelético/patología , Atrofia Muscular/etiología , Infarto del Miocardio/complicaciones , Receptores Adrenérgicos beta 2/fisiología , Animales , Ecocardiografía , Insuficiencia Cardíaca/fisiopatología , Masculino , Ratones , Ratones Noqueados , Músculo Esquelético/metabolismo , Atrofia Muscular/patología , Infarto del Miocardio/fisiopatología , Condicionamiento Físico Animal , Complejo de la Endopetidasa Proteasomal , Transducción de Señal , Ubiquitina/metabolismo
20.
PLoS One ; 9(1): e85820, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24427319

RESUMEN

BACKGROUND: Heart failure (HF)-induced skeletal muscle atrophy is often associated to exercise intolerance and poor prognosis. Better understanding of the molecular mechanisms underlying HF-induced muscle atrophy may contribute to the development of pharmacological strategies to prevent or treat such condition. It has been shown that autophagy-lysosome system is an important mechanism for maintenance of muscle mass. However, its role in HF-induced myopathy has not been addressed yet. Therefore, the aim of the present study was to evaluate autophagy signaling in myocardial infarction (MI)-induced muscle atrophy in rats. METHODS/PRINCIPAL FINDINGS: Wistar rats underwent MI or Sham surgeries, and after 12 weeks were submitted to echocardiography, exercise tolerance and histology evaluations. Cathepsin L activity and expression of autophagy-related genes and proteins were assessed in soleus and plantaris muscles by fluorimetric assay, qRT-PCR and immunoblotting, respectively. MI rats displayed exercise intolerance, left ventricular dysfunction and dilation, thereby suggesting the presence of HF. The key findings of the present study were: a) upregulation of autophagy-related genes (GABARAPL1, ATG7, BNIP3, CTSL1 and LAMP2) was observed only in plantaris while muscle atrophy was observed in both soleus and plantaris muscles, and b) Cathepsin L activity, Bnip3 and Fis1 protein levels, and levels of lipid hydroperoxides were increased specifically in plantaris muscle of MI rats. CONCLUSIONS: Altogether our results provide evidence for autophagy signaling regulation in HF-induced plantaris atrophy but not soleus atrophy. Therefore, autophagy-lysosome system is differentially regulated in atrophic muscles comprising different fiber-types and metabolic characteristics.


Asunto(s)
Autofagia , Atrofia Muscular/etiología , Atrofia Muscular/metabolismo , Infarto del Miocardio/complicaciones , Transducción de Señal , Animales , Autofagia/genética , Biomarcadores , Catepsina L/metabolismo , Ecocardiografía , Regulación de la Expresión Génica , Masculino , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Mitocondrias/metabolismo , Atrofia Muscular/patología , Infarto del Miocardio/diagnóstico , Infarto del Miocardio/fisiopatología , Estrés Oxidativo , Condicionamiento Físico Animal , Ratas , Transcriptoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...