Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Commun Biol ; 6(1): 1209, 2023 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-38012384

RESUMEN

Toxoplasma (T.) gondii is an obligate intracellular parasite with a worldwide distribution. Congenital infection can lead to severe pathological alterations in the brain. To examine the effects of toxoplasmosis in the fetal brain, pregnant guinea pigs are infected with T. gondii oocysts on gestation day 23 and dissected 10, 17 and 25 days afterwards. We show the neocortex to represent a target region of T. gondii and the parasite to infect neural progenitor cells (NPCs), neurons and astrocytes in the fetal brain. Importantly, we observe a significant reduction in neuron number at end-neurogenesis and find a marked reduction in NPC count, indicating that impaired neurogenesis underlies the neuronal decrease in infected fetuses. Moreover, we observe focal microglioses to be associated with T. gondii in the fetal brain. Our findings expand the understanding of the pathophysiology of congenital toxoplasmosis, especially contributing to the development of cortical malformations.


Asunto(s)
Neocórtex , Células-Madre Neurales , Toxoplasma , Toxoplasmosis , Embarazo , Femenino , Animales , Cobayas , Neurogénesis
2.
Parasit Vectors ; 14(1): 389, 2021 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-34362413

RESUMEN

BACKGROUND: Toxoplasma gondii is an obligate intracellular parasite with a worldwide distribution. Congenital infection in humans and animals may lead to severe symptoms in the offspring, especially in the brain. A suitable animal model for human congenital toxoplasmosis is currently lacking. The aim of this study is to establish and validate the guinea pig as a model for human congenital toxoplasmosis by investigating the impact of the T. gondii infection dose, the duration of infection and the gestational stage at infection on the seroconversion, survival rate of dams, fate of the offspring, T. gondii DNA loads in various offspring tissues and organs and the integrity of the offspring brain. METHODS: Pregnant guinea pigs were infected with three different doses (10, 100, 500 oocysts) of T. gondii strain ME49 at three different time points during gestation (15, 30, 48 days post-conception). Serum of dams was tested for the presence of T. gondii antibodies using immunoblotting. T. gondii DNA levels in the dam and offspring were determined by qPCR. Offspring brains were examined histologically. RESULTS: We found the survival rate of dams and fate of the offspring to be highly dependent on the T. gondii infection dose with an inoculation of 500 oocysts ending lethally for all respective offspring. Moreover, both parameters differ depending on the gestational stage at infection with infection in the first and third trimester of gestation resulting in a high offspring mortality rate. The duration of infection was found to substantially impact the seroconversion rate of dams with the probability of seroconversion exceeding 50% after day 20 post-infection. Furthermore, the infection duration of dams influenced the T. gondii DNA loads in the offspring and the integrity of offspring brain. Highest DNA levels were found in the offspring brain of dams infected for ≥ 34 days. CONCLUSION: This study contributes to establishing the guinea pig as a suitable model for human congenital toxoplasmosis and thus lays the foundation for using the guinea pig as a suitable animal model to study scientific questions of high topicality and clinical significance, which address the pathogenesis, diagnosis, therapy and prognosis of congenital toxoplasmosis.


Asunto(s)
Anticuerpos Antiprotozoarios/sangre , Modelos Animales de Enfermedad , Cobayas , Transmisión Vertical de Enfermedad Infecciosa/veterinaria , Toxoplasma/patogenicidad , Toxoplasmosis Animal/parasitología , Toxoplasmosis Congénita/parasitología , Animales , Encéfalo/parasitología , Femenino , Humanos , Carga de Parásitos , Embarazo , Complicaciones Parasitarias del Embarazo , Seroconversión , Toxoplasma/genética
3.
Vet Parasitol ; 296: 109497, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34147768

RESUMEN

Toxoplasmosis is a worldwide zoonosis caused by the obligate intracellular apicomplexan parasite Toxoplasma gondii (T. gondii). Chickens are ground-feeders and represent, especially if free-range, important intermediate hosts in the epidemiology of toxoplasmosis and are used as sentinels of environmental contamination with T. gondii oocysts. Until now, little is known about the burden and regional distribution of T. gondii cysts in the chicken brain. It was therefore the aim of this study to investigate the abundance and specific distribution of T. gondii cysts within the chicken brain following chronic infection with a type II strain (76 K) of T. gondii. A total of 29 chickens were included in the study and divided into control group (n = 9) and two different infection groups, a low dose (n = 10) and a high dose (n = 10) group, which were orally inoculated with 1500 or 150,000 T. gondii oocysts per animal, respectively. Seroconversion was detected in the majority of chickens of the high dose group, but not in the animals of the low dose and the control group. Moreover, T. gondii DNA was detected most frequently in the brain and more frequently in the heart than in liver, spleen, thigh and pectoral muscle using qPCR analysis. The number of T. gondii cysts, quantified in the chicken brain using histological analysis, seems to be considerably lower as compared to studies in rodents, which might explain why T. gondii infected chickens very rarely, if at all, develop neurological deficits. Similar to observations in mice, in which no lateralisation for T. gondii cysts was reported, T. gondii cysts were distributed nearly equally between the left and right chicken brain hemispheres. When different brain regions (fore-, mid- and hindbrain) were compared, all T. gondii cysts were located in the forebrain with the overwhelming majority of these cysts being present in the telencephalic pallium and subpallium. More studies including different strains and higher doses of T. gondii are needed in order to precisely evaluate its cyst burden and regional distribution in the chicken brain. Together, our findings provide insights into the course of T. gondii infection in chickens and are important to understand the differences of chronic T. gondii infection in the chicken and mammalian brain.


Asunto(s)
Enfermedades de las Aves de Corral , Toxoplasma , Toxoplasmosis Animal , Animales , Encéfalo/parasitología , Pollos/parasitología , Costo de Enfermedad , Enfermedades de las Aves de Corral/parasitología , Enfermedades de las Aves de Corral/patología , Toxoplasma/inmunología , Toxoplasmosis Animal/parasitología
4.
Appl Environ Microbiol ; 78(2): 541-8, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22081568

RESUMEN

In this study we investigated the kinetics of colonization, the host susceptibility and transmissibility of methicillin-resistant Staphylococcus aureus (MRSA) after nasal treatment of pigs with three different MRSA strains of distinctive clonal lineages (sequence type 398 [ST398], ST8, and ST9), and origin in weaning piglets. The colonization dose of 5.0 × 10(8) CFU/animal was determined in preliminary animal studies. A total of 57 piglets were randomly divided into four test groups and one control group. Each of three test groups was inoculated intranasally with either MRSA ST8, MRSA ST9, or MRSA ST398. The fourth group was a mixture of animals inoculated with MRSA ST398 and noninoculated "sentinel" animals. Clinical signs, the nasal, conjunctival, and skin colonization of MRSA, fecal excretion, and organ distribution of MRSA, as well as different environmental samples were examined. After nasal inoculation with MRSA piglets of all four test groups showed no clinical signs of an MRSA infection. MRSA was present on the nasal mucosa, skin, and conjunctiva in all four test groups, including sentinel animals. Likewise, fecal excretion and internal colonization of MRSA ST8, ST9, and ST398 could be shown in each group. However, fecal excretion and the colonization rate of the nasal mucosa with MRSA ST9 were significantly lower in the first days after infection than in test groups infected with ST8 and ST398. The results of this study suggest differences in colonization potential of the different MRSA types in pigs. Furthermore, colonization of lymph nodes (e.g., the ileocecal lymph node) with MRSA of the clonal lineage ST398 was demonstrated.


Asunto(s)
Portador Sano/veterinaria , Predisposición Genética a la Enfermedad , Staphylococcus aureus Resistente a Meticilina/patogenicidad , Infecciones Estafilocócicas/veterinaria , Enfermedades de los Porcinos/microbiología , Animales , Portador Sano/microbiología , Conjuntiva/microbiología , Heces/microbiología , Genotipo , Staphylococcus aureus Resistente a Meticilina/clasificación , Staphylococcus aureus Resistente a Meticilina/genética , Tipificación Molecular , Mucosa Nasal/microbiología , Piel/microbiología , Infecciones Estafilocócicas/microbiología , Porcinos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...