Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 244
Filtrar
1.
Front Plant Sci ; 15: 1393241, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38872876

RESUMEN

Asteraceae is the world's richest plant family and is found on all continents, in environments ranging from the coast to the highest mountains. The family shows all growth forms and, as in other angiosperm families, species richness is concentrated in tropical regions. South America has the highest diversity of Asteraceae in the world, yet taxonomic and distributional knowledge gaps remain. This study compiles an updated catalog of Asteraceae native to South America, based on national and regional checklists and ongoing large-scale flora projects. The resulting checklist includes a total of 6,940 species and 564 genera native to South America to date, which represent about a quarter of the family's global diversity. Countries already considered to be megadiverse show the greatest diversity, such as Brazil with 2,095 species, followed by Peru (1,588), Argentina (1,377), and Colombia (1,244), with this diversity mainly focused on the Brazilian Highlands and the Andes. Species endemism also peaks in Brazil, but Sørensen distances reveal the Chilean flora to be eminently different from the rest of the continent. Tribes better represented in the continent are Eupatorieae, Senecioneae and Astereae, also with a remarkably presence of entirely South American subfamilies representing earliest diverging lineages of the Asteraceae, such as Barnadesioideae, Wunderlichioideae, Famatinanthoideae, and Stifftioideae. It is estimated that the discovery and description curves have not yet stabilized, and the number of species is likely to increase by 5 to 10% in the coming years, posing major challenges to continental-scale conservation.

2.
Geroscience ; 2024 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-38879847

RESUMEN

Recently, DNA methylation clocks have been proven to be precise age predictors, and the application of these clocks in cancer tissue has revealed a global age acceleration in a majority of cancer subtypes when compared to normal tissue from the same individual. The polycomb repressor complex 2 plays a pivotal role in the aging process, and its targets have been shown to be enriched in CpG sites that gain methylation with age. This complex is further regulated by the chromatin remodeling complex SWItch/Sucrose Non-Fermentable and its core subunit, notably the tumor suppressor gene SMARCB1, which under physiological conditions inhibits the activity of the polycomb repressor complex 2. Hence, the loss of function of core members of the SWItch/sucrose non-fermentable complex, such as the tumor suppressor gene SMARCB1, results in increased activity of polycomb repressor complex 2 and interferes with the aging process. SMARCB1-deficient neoplasms represent a family of rare tumors, including amongst others malignant rhabdoid tumors, atypical teratoid and rhabdoid tumors, and epithelioid sarcomas. As aging pathways have recently been proposed as therapeutic targets for various cancer types, these tumors represent candidates for testing such treatments. Here, by deriving epigenetic age scores from more than 1000 tumor samples, we identified epigenetic age acceleration as a hallmark feature of epithelioid sarcoma. This observation highlights the potential of targeting aging pathways as an innovative treatment approach for patients with epithelioid sarcoma.

3.
Nat Commun ; 15(1): 4211, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38760334

RESUMEN

The cumulative number of stem cell divisions in a tissue, known as mitotic age, is thought to be a major determinant of cancer-risk. Somatic mutational and DNA methylation (DNAm) clocks are promising tools to molecularly track mitotic age, yet their relationship is underexplored and their potential for cancer risk prediction in normal tissues remains to be demonstrated. Here we build and validate an improved pan-tissue DNAm counter of total mitotic age called stemTOC. We demonstrate that stemTOC's mitotic age proxy increases with the tumor cell-of-origin fraction in each of 15 cancer-types, in precancerous lesions, and in normal tissues exposed to major cancer risk factors. Extensive benchmarking against 6 other mitotic counters shows that stemTOC compares favorably, specially in the preinvasive and normal-tissue contexts. By cross-correlating stemTOC to two clock-like somatic mutational signatures, we confirm the mitotic-like nature of only one of these. Our data points towards DNAm as a promising molecular substrate for detecting mitotic-age increases in normal tissues and precancerous lesions, and hence for developing cancer-risk prediction strategies.


Asunto(s)
Metilación de ADN , Epigénesis Genética , Mitosis , Mutación , Neoplasias , Lesiones Precancerosas , Humanos , Mitosis/genética , Lesiones Precancerosas/genética , Lesiones Precancerosas/patología , Neoplasias/genética , Neoplasias/patología , Células Madre/metabolismo
4.
Front Genet ; 15: 1242636, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38633407

RESUMEN

Allogeneic hematopoietic cell transplantation (HCT) is used to treat many blood-based disorders and malignancies, however it can also result in serious adverse events, such as the development of acute graft-versus-host disease (aGVHD). This study aimed to develop a donor-specific epigenetic classifier to reduce incidence of aGVHD by improving donor selection. Genome-wide DNA methylation was assessed in a discovery cohort of 288 HCT donors selected based on recipient aGVHD outcome; this cohort consisted of 144 cases with aGVHD grades III-IV and 144 controls with no aGVHD. We applied a machine learning algorithm to identify CpG sites predictive of aGVHD. Receiver operating characteristic (ROC) curve analysis of these sites resulted in a classifier with an encouraging area under the ROC curve (AUC) of 0.91. To test this classifier, we used an independent validation cohort (n = 288) selected using the same criteria as the discovery cohort. Attempts to validate the classifier failed with the AUC falling to 0.51. These results indicate that donor DNA methylation may not be a suitable predictor of aGVHD in an HCT setting involving unrelated donors, despite the initial promising results in the discovery cohort. Our work highlights the importance of independent validation of machine learning classifiers, particularly when developing classifiers intended for clinical use.

5.
Genome Biol ; 25(1): 3, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38167104

RESUMEN

The majority of disease-associated variants identified through genome-wide association studies are located outside of protein-coding regions. Prioritizing candidate regulatory variants and gene targets to identify potential biological mechanisms for further functional experiments can be challenging. To address this challenge, we developed FORGEdb ( https://forgedb.cancer.gov/ ; https://forge2.altiusinstitute.org/files/forgedb.html ; and https://doi.org/10.5281/zenodo.10067458 ), a standalone and web-based tool that integrates multiple datasets, delivering information on associated regulatory elements, transcription factor binding sites, and target genes for over 37 million variants. FORGEdb scores provide researchers with a quantitative assessment of the relative importance of each variant for targeted functional experiments.


Asunto(s)
Estudio de Asociación del Genoma Completo , Secuencias Reguladoras de Ácidos Nucleicos , Unión Proteica , Polimorfismo de Nucleótido Simple
6.
Front Genet ; 14: 1258648, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37953923

RESUMEN

Aberrant DNA methylation (DNAm) is known to be associated with the aetiology of cancer, including colorectal cancer (CRC). In the past, the availability of open access data has been the main driver of innovative method development and research training. However, this is increasingly being eroded by the move to controlled access, particularly of medical data, including cancer DNAm data. To rejuvenate this valuable tradition, we leveraged DNAm data from 1,845 samples (535 CRC tumours, 522 normal colon tissues adjacent to tumours, 72 colorectal adenomas, and 716 normal colon tissues from healthy individuals) from 14 open access studies deposited in NCBI GEO and ArrayExpress. We calculated each sample's epigenetic age (EA) using eleven epigenetic clock models and derived the corresponding epigenetic age acceleration (EAA). For EA, we observed that most first- and second-generation epigenetic clocks reflect the chronological age in normal tissues adjacent to tumours and healthy individuals [e.g., Horvath (r = 0.77 and 0.79), Zhang elastic net (EN) (r = 0.70 and 0.73)] unlike the epigenetic mitotic clocks (EpiTOC, HypoClock, MiAge) (r < 0.3). For EAA, we used PhenoAge, Wu, and the above mitotic clocks and found them to have distinct distributions in different tissue types, particularly between normal colon tissues adjacent to tumours and cancerous tumours, as well as between normal colon tissues adjacent to tumours and normal colon tissue from healthy individuals. Finally, we harnessed these associations to develop a classifier using elastic net regression (with lasso and ridge regularisations) that predicts CRC diagnosis based on a patient's sex and EAAs calculated from histologically normal controls (i.e., normal colon tissues adjacent to tumours and normal colon tissue from healthy individuals). The classifier demonstrated good diagnostic potential with ROC-AUC = 0.886, which suggests that an EAA-based classifier trained on relevant data could become a tool to support diagnostic/prognostic decisions in CRC for clinical professionals. Our study also reemphasises the importance of open access clinical data for method development and training of young scientists. Obtaining the required approvals for controlled access data would not have been possible in the timeframe of this study.

7.
Cancer Cell ; 41(10): 1749-1762.e6, 2023 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-37683638

RESUMEN

We report a personalized tumor-informed technology, Patient-specific pROgnostic and Potential tHErapeutic marker Tracking (PROPHET) using deep sequencing of 50 patient-specific variants to detect molecular residual disease (MRD) with a limit of detection of 0.004%. PROPHET and state-of-the-art fixed-panel assays were applied to 760 plasma samples from 181 prospectively enrolled early stage non-small cell lung cancer patients. PROPHET shows higher sensitivity of 45% at baseline with circulating tumor DNA (ctDNA). It outperforms fixed-panel assays in prognostic analysis and demonstrates a median lead-time of 299 days to radiologically confirmed recurrence. Personalized non-canonical variants account for 98.2% with prognostic effects similar to canonical variants. The proposed tumor-node-metastasis-blood (TNMB) classification surpasses TNM staging for prognostic prediction at the decision point of adjuvant treatment. PROPHET shows potential to evaluate the effect of adjuvant therapy and serve as an arbiter of the equivocal radiological diagnosis. These findings highlight the potential advantages of personalized cancer techniques in MRD detection.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Ácidos Nucleicos Libres de Células , ADN Tumoral Circulante , Neoplasias Pulmonares , Carcinoma Pulmonar de Células Pequeñas , Humanos , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/cirugía , Carcinoma de Pulmón de Células no Pequeñas/patología , ADN Tumoral Circulante/análisis , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/cirugía , ADN de Neoplasias , Neoplasia Residual/genética , Biomarcadores de Tumor/genética , Recurrencia Local de Neoplasia/genética
8.
Ann Bot ; 132(2): 255-267, 2023 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-37501620

RESUMEN

BACKGROUND AND AIMS: Understanding diaspore morphology and how much a species invests on dispersal appendages is key for improving our knowledge of dispersal in fragmented habitats. We investigate diaspore morphological traits in high-Andean Compositae and their main abiotic and biotic drivers and test whether they play a role in species distribution patterns across the naturally fragmented high-Andean grasslands. METHODS: We collected diaspore trait data for 125 Compositae species across 47 tropical high-Andean summits, focusing on achene length and pappus-to-achene length ratio, with the latter as a proxy of dispersal investment. We analysed the role of abiotic (temperature, elevation and latitude) and biotic factors (phylogenetic signal and differences between tribes) on diaspore traits and whether they are related to distribution patterns across the Andes, using phylogenomics, distribution modelling and community ecology analyses. KEY RESULTS: Seventy-five percent of the studied species show small achenes (length <3.3 mm) and 67% have high dispersal investment (pappus length at least two times the achene length). Dispersal investment increases with elevation, possibly to compensate for lower air density, and achene length increases towards the equator, where non-seasonal climate prevails. Diaspore traits show significant phylogenetic signal, and higher dispersal investment is observed in Gnaphalieae, Astereae and Senecioneae, which together represent 72% of our species. High-Andean-restricted species found across the tropical Andes have, on average, the pappus four times longer than the achene, a significantly higher dispersal investment than species present only in the northern Andes or only in the central Andes. CONCLUSIONS: Small achenes and high diaspore dispersal investment dominate among high-Andean Compositae, traits typical of mostly three tribes of African origin; but traits are also correlated with the environmental gradients within the high-Andean grasslands. Our results also suggest that diaspore dispersal investment is likely to shape species distribution patterns in naturally fragmented habitats.


Asunto(s)
Asteraceae , Filogenia , Ecosistema , Ecología , Clima
9.
BMC Med ; 21(1): 255, 2023 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-37452374

RESUMEN

BACKGROUND: The feasibility of DNA methylation-based assays in detecting minimal residual disease (MRD) and postoperative monitoring remains unestablished. We aim to investigate the dynamic characteristics of cancer-related methylation signals and the feasibility of methylation-based MRD detection in surgical lung cancer patients. METHODS: Matched tumor, tumor-adjacent tissues, and longitudinal blood samples from a cohort (MEDAL) were analyzed by ultra-deep targeted sequencing and bisulfite sequencing. A tumor-informed methylation-based MRD (timMRD) was employed to evaluate the methylation status of each blood sample. Survival analysis was performed in the MEDAL cohort (n = 195) and validated in an independent cohort (DYNAMIC, n = 36). RESULTS: Tumor-informed methylation status enabled an accurate recurrence risk assessment better than the tumor-naïve methylation approach. Baseline timMRD-scores were positively correlated with tumor burden, invasiveness, and the existence and abundance of somatic mutations. Patients with higher timMRD-scores at postoperative time-points demonstrated significantly shorter disease-free survival in the MEDAL cohort (HR: 3.08, 95% CI: 1.48-6.42; P = 0.002) and the independent DYNAMIC cohort (HR: 2.80, 95% CI: 0.96-8.20; P = 0.041). Multivariable regression analysis identified postoperative timMRD-score as an independent prognostic factor for lung cancer. Compared to tumor-informed somatic mutation status, timMRD-scores yielded better performance in identifying the relapsed patients during postoperative follow-up, including subgroups with lower tumor burden like stage I, and was more accurate among relapsed patients with baseline ctDNA-negative status. Comparing to the average lead time of ctDNA mutation, timMRD-score yielded a negative predictive value of 97.2% at 120 days prior to relapse. CONCLUSIONS: The dynamic methylation-based analysis of peripheral blood provides a promising strategy for postoperative cancer surveillance. TRIAL REGISTRATION: This study (MEDAL, MEthylation based Dynamic Analysis for Lung cancer) was registered on ClinicalTrials.gov on 08/05/2018 (NCT03634826). https://clinicaltrials.gov/ct2/show/NCT03634826 .


Asunto(s)
Ácidos Nucleicos Libres de Células , ADN Tumoral Circulante , Neoplasias Pulmonares , Humanos , Ácidos Nucleicos Libres de Células/genética , ADN Tumoral Circulante/genética , Recurrencia Local de Neoplasia/diagnóstico , Recurrencia Local de Neoplasia/genética , Recurrencia Local de Neoplasia/patología , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/cirugía , Metilación de ADN/genética , Biomarcadores de Tumor/genética
10.
J Pathol ; 260(4): 368-375, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37316954

RESUMEN

Epithelioid sarcoma is a rare and aggressive mesenchymal tumour, the genetic hallmark of which is the loss of expression of SMARCB1, a key member of the SWItch/Sucrose Non-Fermentable (SWI/SNF) chromatin remodelling complex. Hampered by its rarity, epithelioid sarcoma has received little research attention and therapeutic options for this disease remain limited. SMARCB1-deficient tumours also include malignant rhabdoid tumour, atypical teratoid and rhabdoid tumour, epithelioid malignant peripheral nerve sheath tumour, and poorly differentiated chordoma. Histologically, it can be challenging to distinguish epithelioid sarcoma from malignant rhabdoid tumour and other SMARCB1-deficient tumours, whereas methylation profiling shows that they represent distinct entities and facilitates their classification. Methylation studies on SMARCB1-deficient tumours, although not including epithelioid sarcomas, reported methylation subgroups which resulted in new clinical stratification and therapeutic approaches. In addition, emerging evidence indicates that immunotherapy, including immune checkpoint inhibitors, represents a promising therapeutic strategy for SMARCB1-deficient tumours. Here, we show that some epithelioid sarcomas share methylation patterns of malignant rhabdoid tumours indicating that this could help to distinguish these entities and guide treatment. Using gene expression data, we also showed that the immune environment of epithelioid sarcoma is characterised by a predominance of CD8+ lymphocytes and M2 macrophages. These findings have potential implications for the management of patients with epithelioid sarcoma. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Asunto(s)
Tumor Rabdoide , Sarcoma , Humanos , Proteínas de Unión al ADN/genética , Proteínas Cromosómicas no Histona/genética , Tumor Rabdoide/genética , Tumor Rabdoide/terapia , Tumor Rabdoide/metabolismo , Inmunohistoquímica , Proteína SMARCB1/genética , Sarcoma/genética , Sarcoma/terapia , Sarcoma/metabolismo
11.
Nature ; 616(7957): 543-552, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37046093

RESUMEN

Intratumour heterogeneity (ITH) fuels lung cancer evolution, which leads to immune evasion and resistance to therapy1. Here, using paired whole-exome and RNA sequencing data, we investigate intratumour transcriptomic diversity in 354 non-small cell lung cancer tumours from 347 out of the first 421 patients prospectively recruited into the TRACERx study2,3. Analyses of 947 tumour regions, representing both primary and metastatic disease, alongside 96 tumour-adjacent normal tissue samples implicate the transcriptome as a major source of phenotypic variation. Gene expression levels and ITH relate to patterns of positive and negative selection during tumour evolution. We observe frequent copy number-independent allele-specific expression that is linked to epigenomic dysfunction. Allele-specific expression can also result in genomic-transcriptomic parallel evolution, which converges on cancer gene disruption. We extract signatures of RNA single-base substitutions and link their aetiology to the activity of the RNA-editing enzymes ADAR and APOBEC3A, thereby revealing otherwise undetected ongoing APOBEC activity in tumours. Characterizing the transcriptomes of primary-metastatic tumour pairs, we combine multiple machine-learning approaches that leverage genomic and transcriptomic variables to link metastasis-seeding potential to the evolutionary context of mutations and increased proliferation within primary tumour regions. These results highlight the interplay between the genome and transcriptome in influencing ITH, lung cancer evolution and metastasis.


Asunto(s)
Evolución Molecular , Genoma Humano , Neoplasias Pulmonares , Metástasis de la Neoplasia , Transcriptoma , Humanos , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Genómica , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Mutación , Metástasis de la Neoplasia/genética , Transcriptoma/genética , Alelos , Aprendizaje Automático , Genoma Humano/genética
12.
J Pathol ; 259(4): 441-454, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36656098

RESUMEN

The crumbs cell polarity complex plays a crucial role in apical-basal epithelial polarity, cellular adhesion, and morphogenesis. Homozygous variants in human CRB1 result in autosomal recessive Leber congenital amaurosis (LCA) and retinitis pigmentosa (RP), with no established genotype-phenotype correlation. The associated protein complexes have key functions in developmental pathways; however, the underlying disease mechanism remains unclear. Using the oko meduzym289/m289 (crb2a-/- ) zebrafish, we performed integrative transcriptomic (RNA-seq data) and methylomic [reduced representation bisulphite sequencing (RRBS)] analysis of whole retina to identify dysregulated genes and pathways. Delayed retinal cell specification was identified in both the crb2a-/- zebrafish and CRB1 patient-derived retinal organoids, highlighting the dysfunction of cell cycle modulation and epigenetic transcriptional control. Differential DNA methylation analysis revealed novel hypermethylated pathways involving biological adhesion, Hippo, and transforming growth factor ß (TGFß) signalling. By integrating gene expression with DNA methylation using functional epigenetic modules (FEM), we identified six key modules involving cell cycle control and disturbance of TGFß, bone morphogenetic protein (BMP), Hippo, and SMAD protein signal transduction pathways, revealing significant interactome hotspots relevant to crb2a function and confirming the epigenetic control of gene regulation in early retinal development, which points to a novel mechanism underlying CRB1-retinopathies. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Asunto(s)
Polaridad Celular , Pez Cebra , Animales , Humanos , Pez Cebra/genética , Polaridad Celular/genética , Retina/metabolismo , Ciclo Celular , Epigénesis Genética , Proteínas del Ojo/genética , Proteínas del Ojo/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
13.
Ophthalmol Sci ; 3(2): 100258, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36685715

RESUMEN

Purpose: Rare disease diagnosis is challenging in medical image-based artificial intelligence due to a natural class imbalance in datasets, leading to biased prediction models. Inherited retinal diseases (IRDs) are a research domain that particularly faces this issue. This study investigates the applicability of synthetic data in improving artificial intelligence-enabled diagnosis of IRDs using generative adversarial networks (GANs). Design: Diagnostic study of gene-labeled fundus autofluorescence (FAF) IRD images using deep learning. Participants: Moorfields Eye Hospital (MEH) dataset of 15 692 FAF images obtained from 1800 patients with confirmed genetic diagnosis of 1 of 36 IRD genes. Methods: A StyleGAN2 model is trained on the IRD dataset to generate 512 × 512 resolution images. Convolutional neural networks are trained for classification using different synthetically augmented datasets, including real IRD images plus 1800 and 3600 synthetic images, and a fully rebalanced dataset. We also perform an experiment with only synthetic data. All models are compared against a baseline convolutional neural network trained only on real data. Main Outcome Measures: We evaluated synthetic data quality using a Visual Turing Test conducted with 4 ophthalmologists from MEH. Synthetic and real images were compared using feature space visualization, similarity analysis to detect memorized images, and Blind/Referenceless Image Spatial Quality Evaluator (BRISQUE) score for no-reference-based quality evaluation. Convolutional neural network diagnostic performance was determined on a held-out test set using the area under the receiver operating characteristic curve (AUROC) and Cohen's Kappa (κ). Results: An average true recognition rate of 63% and fake recognition rate of 47% was obtained from the Visual Turing Test. Thus, a considerable proportion of the synthetic images were classified as real by clinical experts. Similarity analysis showed that the synthetic images were not copies of the real images, indicating that copied real images, meaning the GAN was able to generalize. However, BRISQUE score analysis indicated that synthetic images were of significantly lower quality overall than real images (P < 0.05). Comparing the rebalanced model (RB) with the baseline (R), no significant change in the average AUROC and κ was found (R-AUROC = 0.86[0.85-88], RB-AUROC = 0.88[0.86-0.89], R-k = 0.51[0.49-0.53], and RB-k = 0.52[0.50-0.54]). The synthetic data trained model (S) achieved similar performance as the baseline (S-AUROC = 0.86[0.85-87], S-k = 0.48[0.46-0.50]). Conclusions: Synthetic generation of realistic IRD FAF images is feasible. Synthetic data augmentation does not deliver improvements in classification performance. However, synthetic data alone deliver a similar performance as real data, and hence may be useful as a proxy to real data. Financial Disclosure(s): Proprietary or commercial disclosure may be found after the references.

14.
Clin Epigenetics ; 14(1): 110, 2022 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-36056446

RESUMEN

Over the past decade, bioethicists, legal scholars and social scientists have started to investigate the potential implications of epigenetic research and technologies on medicine and society. There is growing literature discussing the most promising opportunities, as well as arising ethical, legal and social issues (ELSI). This paper explores the views of epigenetic researchers about some of these discussions. From January to March 2020, we conducted an online survey of 189 epigenetic researchers working in 31 countries. We questioned them about the scope of their field, opportunities in different areas of specialization, and ELSI in the conduct of research and knowledge translation. We also assessed their level of concern regarding four emerging non-medical applications of epigenetic testing-i.e., in life insurance, forensics, immigration and direct-to-consumer testing. Although there was strong agreement on DNA methylation, histone modifications, 3D structure of chromatin and nucleosomes being integral elements of the field, there was considerable disagreement on transcription factors, RNA interference, RNA splicing and prions. The most prevalent ELSI experienced or witnessed by respondents were in obtaining timely access to epigenetic data in existing databases, and in the communication of epigenetic findings by the media. They expressed high levels of concern regarding non-medical applications of epigenetics, echoing cautionary appraisals in the social sciences and humanities literature.


Asunto(s)
Metilación de ADN , Epigenómica , Humanos , Encuestas y Cuestionarios
15.
Genome Med ; 14(1): 71, 2022 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-35794667

RESUMEN

Here, we report a lack of diversity in epigenome-wide association studies (EWAS) and DNA methylation (DNAm) data, discuss current challenges, and propose solutions for EWAS and DNAm research in diverse populations. The strategies we propose include fostering community involvement, new data generation, and cost-effective approaches such as locus-specific analysis and ancestry variable region analysis.


Asunto(s)
Epigénesis Genética , Epigenoma , Metilación de ADN , Humanos
16.
Front Plant Sci ; 13: 883151, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35860537

RESUMEN

Reliably documenting plant diversity is necessary to protect and sustainably benefit from it. At the heart of this documentation lie species concepts and the practical methods used to delimit taxa. Here, we apply a total-evidence, iterative methodology to delimit and document species in the South American genus Victoria (Nymphaeaceae). The systematics of Victoria has thus far been poorly characterized due to difficulty in attributing species identities to biological collections. This research gap stems from an absence of type material and biological collections, also the confused diagnosis of V. cruziana. With the goal of improving systematic knowledge of the genus, we compiled information from historical records, horticulture and geography and assembled a morphological dataset using citizen science and specimens from herbaria and living collections. Finally, we generated genomic data from a subset of these specimens. Morphological and geographical observations suggest four putative species, three of which are supported by nuclear population genomic and plastid phylogenomic inferences. We propose these three confirmed entities as robust species, where two correspond to the currently recognized V. amazonica and V. cruziana, the third being new to science, which we describe, diagnose and name here as V. boliviana Magdalena and L. T. Sm. Importantly, we identify new morphological and molecular characters which serve to distinguish the species and underpin their delimitations. Our study demonstrates how combining different types of character data into a heuristic, total-evidence approach can enhance the reliability with which biological diversity of morphologically challenging groups can be identified, documented and further studied.

18.
Nat Biotechnol ; 40(10): 1478-1487, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35654977

RESUMEN

Targeted bisulfite sequencing (TBS) has become the method of choice for the cost-effective, targeted analysis of the human methylome at base-pair resolution. In this study, we benchmarked five commercially available TBS platforms-three hybridization capture-based (Agilent, Roche and Illumina) and two reduced-representation-based (Diagenode and NuGen)-across 11 samples. Two samples were also compared with whole-genome DNA methylation sequencing with the Illumina and Oxford Nanopore platforms. We assessed workflow complexity, on/off-target performance, coverage, accuracy and reproducibility. Although all platforms produced robust and reproducible data, major differences in the number and identity of the CpG sites covered make it difficult to compare datasets generated on different platforms. To overcome this limitation, we applied imputation and show that it improves interoperability from an average of 10.35% (0.8 million) to 97% (7.6 million) common CpG sites. Our study provides guidance on which TBS platform to use for different methylome features and offers an imputation-based harmonization solution that allows comparative, integrative analysis.


Asunto(s)
Epigenoma , Secuenciación de Nucleótidos de Alto Rendimiento , Islas de CpG/genética , Metilación de ADN/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Reproducibilidad de los Resultados , Análisis de Secuencia de ADN/métodos
19.
Eur J Cancer ; 168: 1-11, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35421838

RESUMEN

AIM: Osteosarcoma (OS) is the most common primary bone tumour in children and adolescents. Circulating free (cfDNA) and circulating tumour DNA (ctDNA) are promising biomarkers for disease surveillance and prognostication in several cancer types; however, few such studies are reported for OS. The purpose of this study was to discover and validate methylation-based biomarkers to detect plasma ctDNA in patients with OS and explore their utility as prognostic markers. METHODS: Candidate CpG markers were selected through analysis of methylation array data for OS, non-OS tumours and germline samples. Candidates were validated in two independent OS datasets (n = 162, n = 107) and the four top-performing markers were selected. Methylation-specific digital droplet PCR (ddPCR) assays were designed and experimentally validated in OS tumour samples (n = 20) and control plasma samples. Finally, ddPCR assays were applied to pre-operative plasma and where available post-operative plasma from 72 patients with OS, and findings correlated with outcome. RESULTS: Custom ddPCR assays detected ctDNA in 69% and 40% of pre-operative plasma samples (n = 72), based on thresholds of one or two positive markers respectively. ctDNA was detected in 5/17 (29%) post-operative plasma samples from patients, which in four cases were associated with or preceded disease relapse. Both pre-operative cfDNA levels and ctDNA detection independently correlated with overall survival (p = 0.0015 and p = 0.0096, respectively). CONCLUSION: Our findings illustrate the potential of mutation-independent methylation-based ctDNA assays for OS. This study lays the foundation for multi-institutional collaborative studies to explore the utility of plasma-derived biomarkers in the management of OS.


Asunto(s)
ADN Tumoral Circulante , Osteosarcoma , Adolescente , Biomarcadores de Tumor/genética , Niño , ADN Tumoral Circulante/genética , Humanos , Mutación , Osteosarcoma/diagnóstico , Osteosarcoma/genética , Pronóstico
20.
Nat Methods ; 19(3): 296-306, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35277705

RESUMEN

Bulk-tissue DNA methylomes represent an average over many different cell types, hampering our understanding of cell-type-specific contributions to disease development. As single-cell methylomics is not scalable to large cohorts of individuals, cost-effective computational solutions are needed, yet current methods are limited to tissues such as blood. Here we leverage the high-resolution nature of tissue-specific single-cell RNA-sequencing datasets to construct a DNA methylation atlas defined for 13 solid tissue types and 40 cell types. We comprehensively validate this atlas in independent bulk and single-nucleus DNA methylation datasets. We demonstrate that it correctly predicts the cell of origin of diverse cancer types and discovers new prognostic associations in olfactory neuroblastoma and stage 2 melanoma. In brain, the atlas predicts a neuronal origin for schizophrenia, with neuron-specific differential DNA methylation enriched for corresponding genome-wide association study risk loci. In summary, the DNA methylation atlas enables the decomposition of 13 different human tissue types at a high cellular resolution, paving the way for an improved interpretation of epigenetic data.


Asunto(s)
Metilación de ADN , Epigenoma , Islas de CpG , Epigénesis Genética , Epigenómica , Estudio de Asociación del Genoma Completo , Humanos , Neuronas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA