Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 14(1): 5466, 2023 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-37749075

RESUMEN

The interplay between 3D chromatin architecture and gene silencing is incompletely understood. Here, we report a novel point mutation in the non-canonical SMC protein SMCHD1 that enhances its silencing capacity at endogenous developmental targets. Moreover, it also results in enhanced silencing at the facioscapulohumeral muscular dystrophy associated macrosatellite-array, D4Z4, resulting in enhanced repression of DUX4 encoded by this repeat. Heightened SMCHD1 silencing perturbs developmental Hox gene activation, causing a homeotic transformation in mice. Paradoxically, the mutant SMCHD1 appears to enhance insulation against other epigenetic regulators, including PRC2 and CTCF, while depleting long range chromatin interactions akin to what is observed in the absence of SMCHD1. These data suggest that SMCHD1's role in long range chromatin interactions is not directly linked to gene silencing or insulating the chromatin, refining the model for how the different levels of SMCHD1-mediated chromatin regulation interact to bring about gene silencing in normal development and disease.


Asunto(s)
Cromatina , Proteínas Cromosómicas no Histona , Distrofia Muscular Facioescapulohumeral , Animales , Ratones , Cromatina/genética , Epigenómica , Silenciador del Gen , Genes Homeobox , Distrofia Muscular Facioescapulohumeral/genética , Proteínas Cromosómicas no Histona/genética
2.
Development ; 149(22)2022 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-36355065

RESUMEN

Female mouse embryonic stem cells (mESCs) present differently from male mESCs in several fundamental ways; however, complications with their in vitro culture have resulted in an under-representation of female mESCs in the literature. Recent studies show that the second X chromosome in female, and more specifically the transcriptional activity from both of these chromosomes due to absent X chromosome inactivation, sets female and male mESCs apart. To avoid this undesirable state, female mESCs in culture preferentially adopt an XO karyotype, with this adaption leading to loss of their unique properties in favour of a state that is near indistinguishable from male mESCs. If female pluripotency is to be studied effectively in this system, it is crucial that high-quality cultures of XX mESCs are available. Here, we report a method for better maintaining XX female mESCs in culture that also stabilises the male karyotype and makes study of female-specific pluripotency more feasible.


Asunto(s)
Células Madre Embrionarias de Ratones , Inactivación del Cromosoma X , Masculino , Animales , Femenino , Ratones , Diferenciación Celular/fisiología , Inactivación del Cromosoma X/genética , Cariotipo
3.
Nat Commun ; 13(1): 4295, 2022 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-35879318

RESUMEN

Parents transmit genetic and epigenetic information to their offspring. Maternal effect genes regulate the offspring epigenome to ensure normal development. Here we report that the epigenetic regulator SMCHD1 has a maternal effect on Hox gene expression and skeletal patterning. Maternal SMCHD1, present in the oocyte and preimplantation embryo, prevents precocious activation of Hox genes post-implantation. Without maternal SMCHD1, highly penetrant posterior homeotic transformations occur in the embryo. Hox genes are decorated with Polycomb marks H2AK119ub and H3K27me3 from the oocyte throughout early embryonic development; however, loss of maternal SMCHD1 does not deplete these marks. Therefore, we propose maternal SMCHD1 acts downstream of Polycomb marks to establish a chromatin state necessary for persistent epigenetic silencing and appropriate Hox gene expression later in the developing embryo. This is a striking role for maternal SMCHD1 in long-lived epigenetic effects impacting offspring phenotype.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Genes Homeobox , Animales , Cromatina/genética , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Embrión de Mamíferos/metabolismo , Femenino , Expresión Génica , Ratones , Proteínas del Grupo Polycomb/genética , Proteínas del Grupo Polycomb/metabolismo , Embarazo
4.
iScience ; 25(7): 104684, 2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35856023

RESUMEN

SMCHD1 (structural maintenance of chromosomes hinge domain containing 1) is a noncanonical SMC protein that mediates long-range repressive chromatin structures. SMCHD1 is required for X chromosome inactivation in female cells and repression of imprinted and clustered autosomal genes, with SMCHD1 mutations linked to human diseases facioscapulohumeral muscular dystrophy (FSHD) and bosma arhinia and micropthalmia syndrome (BAMS). We used a conditional mouse model to investigate SMCHD1 in hematopoiesis. Smchd1-deleted mice maintained steady-state hematopoiesis despite showing an impaired reconstitution capacity in competitive bone marrow transplantations and age-related hematopoietic stem cell (HSC) loss. This phenotype was more pronounced in Smchd1-deleted females, which showed a loss of quiescent HSCs and fewer B cells. Gene expression profiling of Smchd1-deficient HSCs and B cells revealed known and cell-type-specific SMCHD1-sensitive genes and significant disruption to X-linked gene expression in female cells. These data show SMCHD1 is a regulator of HSCs whose effects are more profound in females.

5.
Epigenetics Chromatin ; 15(1): 26, 2022 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-35843975

RESUMEN

Embryonic development is dependent on the maternal supply of proteins through the oocyte, including factors setting up the adequate epigenetic patterning of the zygotic genome. We previously reported that one such factor is the epigenetic repressor SMCHD1, whose maternal supply controls autosomal imprinted expression in mouse preimplantation embryos and mid-gestation placenta. In mouse preimplantation embryos, X chromosome inactivation is also an imprinted process. Combining genomics and imaging, we show that maternal SMCHD1 is required not only for the imprinted expression of Xist in preimplantation embryos, but also for the efficient silencing of the inactive X in both the preimplantation embryo and mid-gestation placenta. These results expand the role of SMCHD1 in enforcing the silencing of Polycomb targets. The inability of zygotic SMCHD1 to fully restore imprinted X inactivation further points to maternal SMCHD1's role in setting up the appropriate chromatin environment during preimplantation development, a critical window of epigenetic remodelling.


Asunto(s)
Proteínas Cromosómicas no Histona , ARN Largo no Codificante , Inactivación del Cromosoma X , Animales , Blastocisto/fisiología , Cromatina/genética , Cromatina/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Desarrollo Embrionario , Impresión Genómica , Ratones , ARN Largo no Codificante/biosíntesis , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Cromosoma X
6.
Nat Commun ; 13(1): 1658, 2022 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-35351876

RESUMEN

The process of epigenetic silencing, while fundamentally important, is not yet completely understood. Here we report a replenishable female mouse embryonic stem cell (mESC) system, Xmas, that allows rapid assessment of X chromosome inactivation (XCI), the epigenetic silencing mechanism of one of the two X chromosomes that enables dosage compensation in female mammals. Through a targeted genetic screen in differentiating Xmas mESCs, we reveal that the BAF complex is required to create nucleosome-depleted regions at promoters on the inactive X chromosome during the earliest stages of establishment of XCI. Without this action gene silencing fails. Xmas mESCs provide a tractable model for screen-based approaches that enable the discovery of unknown facets of the female-specific process of XCI and epigenetic silencing more broadly.


Asunto(s)
ARN Largo no Codificante , Inactivación del Cromosoma X , Animales , Cromatina/genética , Compensación de Dosificación (Genética) , Epigénesis Genética , Femenino , Ratones , ARN Largo no Codificante/genética , Cromosoma X/genética , Inactivación del Cromosoma X/genética
7.
Elife ; 92020 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-33186096

RESUMEN

Genomic imprinting establishes parental allele-biased expression of a suite of mammalian genes based on parent-of-origin specific epigenetic marks. These marks are under the control of maternal effect proteins supplied in the oocyte. Here we report epigenetic repressor Smchd1 as a novel maternal effect gene that regulates the imprinted expression of ten genes in mice. We also found zygotic SMCHD1 had a dose-dependent effect on the imprinted expression of seven genes. Together, zygotic and maternal SMCHD1 regulate three classic imprinted clusters and eight other genes, including non-canonical imprinted genes. Interestingly, the loss of maternal SMCHD1 does not alter germline DNA methylation imprints pre-implantation or later in gestation. Instead, what appears to unite most imprinted genes sensitive to SMCHD1 is their reliance on polycomb-mediated methylation as germline or secondary imprints, therefore we propose that SMCHD1 acts downstream of polycomb imprints to mediate its function.


Asunto(s)
Proteínas Cromosómicas no Histona/metabolismo , Impresión Genómica/genética , Animales , Blastocisto , Proteínas Cromosómicas no Histona/genética , Metilación de ADN , Embrión de Mamíferos/metabolismo , Femenino , Regulación del Desarrollo de la Expresión Génica/fisiología , Genotipo , Proteínas Fluorescentes Verdes , Masculino , Ratones , Células-Madre Neurales
8.
Nat Commun ; 11(1): 2420, 2020 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-32415101

RESUMEN

Archetypal human pluripotent stem cells (hPSC) are widely considered to be equivalent in developmental status to mouse epiblast stem cells, which correspond to pluripotent cells at a late post-implantation stage of embryogenesis. Heterogeneity within hPSC cultures complicates this interspecies comparison. Here we show that a subpopulation of archetypal hPSC enriched for high self-renewal capacity (ESR) has distinct properties relative to the bulk of the population, including a cell cycle with a very low G1 fraction and a metabolomic profile that reflects a combination of oxidative phosphorylation and glycolysis. ESR cells are pluripotent and capable of differentiation into primordial germ cell-like cells. Global DNA methylation levels in the ESR subpopulation are lower than those in mouse epiblast stem cells. Chromatin accessibility analysis revealed a unique set of open chromatin sites in ESR cells. RNA-seq at the subpopulation and single cell levels shows that, unlike mouse epiblast stem cells, the ESR subset of hPSC displays no lineage priming, and that it can be clearly distinguished from gastrulating and extraembryonic cell populations in the primate embryo. ESR hPSC correspond to an earlier stage of post-implantation development than mouse epiblast stem cells.


Asunto(s)
Células Madre Embrionarias/citología , Estratos Germinativos/citología , Células Madre Pluripotentes/citología , Animales , Diferenciación Celular , Cromatina/metabolismo , Metilación de ADN , Epigenoma , Citometría de Flujo , Técnica del Anticuerpo Fluorescente Indirecta , Fase G1 , Estratos Germinativos/metabolismo , Glucólisis , Humanos , Sistema de Señalización de MAP Quinasas , Metabolómica , Ratones , Mitocondrias/metabolismo , Fosforilación Oxidativa , RNA-Seq , Transducción de Señal
9.
Cell Rep ; 27(2): 442-454.e5, 2019 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-30970248

RESUMEN

Neural tube defects (NTDs) are common birth defects in humans and show an unexplained female bias. Female mice lacking the tumor suppressor p53 display NTDs with incomplete penetrance. We found that the combined loss of pro-apoptotic BIM and p53 caused 100% penetrant, female-exclusive NTDs, which allowed us to investigate the female-specific functions of p53. We report that female p53-/- embryonic neural tube samples show fewer cells with inactive X chromosome markers Xist and H3K27me3 and a concomitant increase in biallelic expression of the X-linked genes, Huwe1 and Usp9x. Decreased Xist and increased X-linked gene expression was confirmed by RNA sequencing. Moreover, we found that p53 directly bound response elements in the X chromosome inactivation center (XIC). Together, these findings suggest p53 directly activates XIC genes, without which there is stochastic failure in X chromosome inactivation, and that X chromosome inactivation failure may underlie the female bias in neural tube closure defects.


Asunto(s)
Defectos del Tubo Neural/genética , Proteína p53 Supresora de Tumor/deficiencia , Animales , Células Madre Embrionarias/patología , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Defectos del Tubo Neural/patología , Embarazo , Procesos Estocásticos , Proteína p53 Supresora de Tumor/genética , Inactivación del Cromosoma X
10.
Nucleic Acids Res ; 47(8): e46, 2019 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-30793194

RESUMEN

Systematic variation in the methylation of cytosines at CpG sites plays a critical role in early development of humans and other mammals. Of particular interest are regions of differential methylation between parental alleles, as these often dictate monoallelic gene expression, resulting in parent of origin specific control of the embryonic transcriptome and subsequent development, in a phenomenon known as genomic imprinting. Using long-read nanopore sequencing we show that, with an average genomic coverage of ∼10, it is possible to determine both the level of methylation of CpG sites and the haplotype from which each read arises. The long-read property is exploited to characterize, using novel methods, both methylation and haplotype for reads that have reduced basecalling precision compared to Sanger sequencing. We validate the analysis both through comparison of nanopore-derived methylation patterns with those from Reduced Representation Bisulfite Sequencing data and through comparison with previously reported data. Our analysis successfully identifies known imprinting control regions (ICRs) as well as some novel differentially methylated regions which, due to their proximity to hitherto unknown monoallelically expressed genes, may represent new ICRs.


Asunto(s)
Genoma , Impresión Genómica , Técnicas de Genotipaje , Haplotipos , Análisis de Secuencia de ADN/estadística & datos numéricos , Alelos , Animales , Mapeo Cromosómico , Islas de CpG , Metilación de ADN , Embrión de Mamíferos/química , Embrión de Mamíferos/metabolismo , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento , Masculino , Ratones , Placenta/química , Placenta/metabolismo , Embarazo
11.
Nat Struct Mol Biol ; 25(9): 766-777, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30127357

RESUMEN

The regulation of higher-order chromatin structure is complex and dynamic, and a full understanding of the suite of mechanisms governing this architecture is lacking. Here, we reveal the noncanonical SMC protein Smchd1 to be a novel regulator of long-range chromatin interactions in mice, and we add Smchd1 to the canon of epigenetic proteins required for Hox-gene regulation. The effect of losing Smchd1-dependent chromatin interactions has varying outcomes that depend on chromatin context. At autosomal targets transcriptionally sensitive to Smchd1 deletion, we found increased short-range interactions and ectopic enhancer activation. In contrast, the inactive X chromosome was transcriptionally refractive to Smchd1 ablation, despite chromosome-wide increases in short-range interactions. In the inactive X, we observed spreading of trimethylated histone H3 K27 (H3K27me3) domains into regions not normally decorated by this mark. Together, these data suggest that Smchd1 is able to insulate chromatin, thereby limiting access to other chromatin-modifying proteins.


Asunto(s)
Cromatina/metabolismo , Proteínas Cromosómicas no Histona/fisiología , Genes Homeobox , Familia de Multigenes , Cromosoma X , Animales , Proteínas Cromosómicas no Histona/genética , Elementos de Facilitación Genéticos , Eliminación de Gen , Silenciador del Gen , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados
12.
Nat Genet ; 49(2): 249-255, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28067911

RESUMEN

Bosma arhinia microphthalmia syndrome (BAMS) is an extremely rare and striking condition characterized by complete absence of the nose with or without ocular defects. We report here that missense mutations in the epigenetic regulator SMCHD1 mapping to the extended ATPase domain of the encoded protein cause BAMS in all 14 cases studied. All mutations were de novo where parental DNA was available. Biochemical tests and in vivo assays in Xenopus laevis embryos suggest that these mutations may behave as gain-of-function alleles. This finding is in contrast to the loss-of-function mutations in SMCHD1 that have been associated with facioscapulohumeral muscular dystrophy (FSHD) type 2. Our results establish SMCHD1 as a key player in nasal development and provide biochemical insight into its enzymatic function that may be exploited for development of therapeutics for FSHD.


Asunto(s)
Atresia de las Coanas/genética , Proteínas Cromosómicas no Histona/genética , Microftalmía/genética , Mutación Missense/genética , Nariz/anomalías , Animales , Línea Celular , Preescolar , Epigénesis Genética/genética , Femenino , Predisposición Genética a la Enfermedad/genética , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Distrofia Muscular Facioescapulohumeral/genética , Xenopus laevis/genética
13.
Genom Data ; 10: 97-100, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27766205

RESUMEN

Reduced representation bisulfite sequencing (RRBS) provides an efficient method for measuring DNA methylation at single base resolution in regions of high CpG density. This technique has been extensively tested on the HiSeq2500, which uses a 4-colour detection method, however it is unclear if the method will also work on the NextSeq500 platform, which employs a 2-colour detection system. We created an RRBS library and sequenced it on both the HiSeq2500 and NextSeq500, and found no significant difference in the base composition of reads derived from either machine. Moreover, the methylation calls made from the data of each instrument were highly concordant, with methylation patterns across the genome appearing as expected. Therefore, RRBS can be sequenced on the Nextseq500 with comparable quality to that of the HiSeq2500. All sequencing data are deposited in the GEO database under accession number GSE87097.

14.
Breast Cancer Res ; 17: 85, 2015 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-26080807

RESUMEN

INTRODUCTION: MicroRNAs (miRNAs) have been implicated in governing lineage specification and differentiation in multiple organs; however, little is known about their specific roles in mammopoiesis. We have determined the global miRNA expression profiles of functionally distinct epithelial subpopulations in mouse and human mammary tissue, and compared these to their cognate transcriptomes and epigenomes. Finally, the human miRNA signatures were used to interrogate the different subtypes of breast cancer, with a view to determining miRNA networks deregulated during oncogenesis. METHODS: RNA from sorted mouse and human mammary cell subpopulations was subjected to miRNA expression analysis using the TaqMan MicroRNA Array. Differentially expressed (DE) miRNAs were correlated with gene expression and histone methylation profiles. Analysis of miRNA signatures of the intrinsic subtypes of breast cancer in The Cancer Genome Atlas (TCGA) database versus those of normal human epithelial subpopulations was performed. RESULTS: Unique miRNA signatures characterized each subset (mammary stem cell (MaSC)/basal, luminal progenitor, mature luminal, stromal), with a high degree of conservation across species. Comparison of miRNA and transcriptome profiles for the epithelial subtypes revealed an inverse relationship and pinpointed key developmental genes. Interestingly, expression of the primate-specific miRNA cluster (19q13.4) was found to be restricted to the MaSC/basal subset. Comparative analysis of miRNA signatures with H3 lysine modification maps of the different epithelial subsets revealed a tight correlation between active or repressive marks for the top DE miRNAs, including derepression of miRNAs in Ezh2-deficient cellular subsets. Interrogation of TCGA-identified miRNA profiles with the miRNA signatures of different human subsets revealed specific relationships. CONCLUSIONS: The derivation of global miRNA expression profiles for the different mammary subpopulations provides a comprehensive resource for understanding the interplay between miRNA networks and target gene expression. These data have highlighted lineage-specific miRNAs and potential miRNA-mRNA networks, some of which are disrupted in neoplasia. Furthermore, our findings suggest that key developmental miRNAs are regulated by global changes in histone modification, thus linking the mammary epigenome with genome-wide changes in the expression of genes and miRNAs. Comparative miRNA signature analyses between normal breast epithelial cells and breast tumors confirmed an important linkage between luminal progenitor cells and basal-like tumors.


Asunto(s)
Mama/metabolismo , Epigénesis Genética , Células Epiteliales/metabolismo , Regulación de la Expresión Génica , MicroARNs/genética , Transcriptoma , Animales , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Linaje de la Célula/genética , Análisis por Conglomerados , Femenino , Perfilación de la Expresión Génica , Sitios Genéticos , Humanos , Glándulas Mamarias Animales/metabolismo , Ratones , Interferencia de ARN , ARN Mensajero/genética
15.
BMC Cancer ; 15: 221, 2015 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-25879659

RESUMEN

BACKGROUND: The molecular regulators that orchestrate stem cell renewal, proliferation and differentiation along the mammary epithelial hierarchy remain poorly understood. Here we have performed a large-scale pooled RNAi screen in primary mouse mammary stem cell (MaSC)-enriched basal cells using 1295 shRNAs against genes principally involved in transcriptional regulation. METHODS: MaSC-enriched basal cells transduced with lentivirus pools carrying shRNAs were maintained as non-adherent mammospheres, a system known to support stem and progenitor cells. Integrated shRNAs that altered culture kinetics were identified by next generation sequencing as relative frequency changes over time. RNA-seq-based expression profiling coupled with in vitro progenitor and in vivo transplantation assays was used to confirm a role for candidate genes in mammary stem and/or progenitor cells. RESULTS: Utilizing a mammosphere-based assay, the screen identified several candidate regulators. Although some genes had been previously implicated in mammary gland development, the vast majority of genes uncovered have no known function within the mammary gland. RNA-seq analysis of freshly purified primary mammary epithelial populations and short-term cultured mammospheres was used to confirm the expression of candidate regulators. Two genes, Asap1 and Prox1, respectively implicated in breast cancer metastasis and progenitor cell function in other systems, were selected for further analysis as their roles in the normal mammary gland were unknown. Both Prox1 and Asap1 were shown to act as negative regulators of progenitor activity in vitro, and Asap1 knock-down led to a marked increase in repopulating activity in vivo, implying a role in stem cell activity. CONCLUSIONS: This study has revealed a number of novel genes that influence the activity or survival of mammary stem and/or progenitor cells. Amongst these, we demonstrate that Prox1 and Asap1 behave as negative regulators of mammary stem/progenitor function. Both of these genes have also been implicated in oncogenesis. Our findings provide proof of principle for the use of short-term cultured primary MaSC/basal cells in functional RNAi screens.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas de Homeodominio/genética , Glándulas Mamarias Animales/metabolismo , ARN Interferente Pequeño/genética , Células Madre/metabolismo , Proteínas Supresoras de Tumor/genética , Animales , Recuento de Células , Diferenciación Celular/genética , Células Epiteliales/metabolismo , Femenino , Citometría de Flujo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento , Inmunofenotipificación , Ratones , Reproducibilidad de los Resultados
16.
Nat Cell Biol ; 17(4): 365-75, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25730472

RESUMEN

Expansion and remodelling of the mammary epithelium requires a tight balance between cellular proliferation, differentiation and death. To explore cell survival versus cell death decisions in this organ, we deleted the pro-survival gene Mcl-1 in the mammary epithelium. Mcl-1 was found to be essential at multiple developmental stages including morphogenesis in puberty and alveologenesis in pregnancy. Moreover, Mcl-1-deficient basal cells were virtually devoid of repopulating activity, suggesting that this gene is required for stem cell function. Profound upregulation of the Mcl-1 protein was evident in alveolar cells at the switch to lactation, and Mcl-1 deficiency impaired lactation. Interestingly, EGF was identified as one of the most highly upregulated genes on lactogenesis and inhibition of EGF or mTOR signalling markedly impaired lactation, with concomitant decreases in Mcl-1 and phosphorylated ribosomal protein S6. These data demonstrate that Mcl-1 is essential for mammopoiesis and identify EGF as a critical trigger of Mcl-1 translation to ensure survival of milk-producing alveolar cells.


Asunto(s)
Factor de Crecimiento Epidérmico/biosíntesis , Lactancia/genética , Lactancia/metabolismo , Glándulas Mamarias Animales/metabolismo , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/genética , Animales , Apoptosis/genética , Secuencia de Bases , Diferenciación Celular/genética , Línea Celular , Proliferación Celular/genética , Supervivencia Celular , Factor de Crecimiento Epidérmico/antagonistas & inhibidores , Factor de Crecimiento Epidérmico/metabolismo , Femenino , Técnicas de Inactivación de Genes , Ratones , Ratones Endogámicos C57BL , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/biosíntesis , Fosforilación , Embarazo , Proteína S6 Ribosómica/metabolismo , Análisis de Secuencia de ARN , Células Madre/citología , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Regulación hacia Arriba
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA