Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Front Physiol ; 13: 853317, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35350687

RESUMEN

The past decade has witnessed tremendous endeavors to deliver novel preclinical in vitro lung models for pulmonary research endpoints, including foremost with the advent of organ- and lung-on-chips. With growing interest in aerosol transmission and infection of respiratory viruses within a host, most notably the SARS-CoV-2 virus amidst the global COVID-19 pandemic, the importance of crosstalk between the different lung regions (i.e., extra-thoracic, conductive and respiratory), with distinct cellular makeups and physiology, are acknowledged to play an important role in the progression of the disease from the initial onset of infection. In the present Methods article, we designed and fabricated to the best of our knowledge the first multi-compartment human airway-on-chip platform to serve as a preclinical in vitro benchmark underlining regional lung crosstalk for viral infection pathways. Combining microfabrication and 3D printing techniques, our platform mimics key elements of the respiratory system spanning (i) nasal passages that serve as the alleged origin of infections, (ii) the mid-bronchial airway region and (iii) the deep acinar region, distinct with alveolated airways. Crosstalk between the three components was exemplified in various assays. First, viral-load (including SARS-CoV-2) injected into the apical partition of the nasal compartment was detected in distal bronchial and acinar components upon applying physiological airflow across the connected compartment models. Secondly, nebulized viral-like dsRNA, poly I:C aerosols were administered to the nasal apical compartment, transmitted to downstream compartments via respiratory airflows and leading to an elevation in inflammatory cytokine levels secreted by distinct epithelial cells in each respective compartment. Overall, our assays establish an in vitro methodology that supports the hypothesis for viral-laden airflow mediated transmission through the respiratory system cellular landscape. With a keen eye for broader end user applications, we share detailed methodologies for fabricating, assembling, calibrating, and using our multi-compartment platform, including open-source fabrication files. Our platform serves as an early proof-of-concept that can be readily designed and adapted to specific preclinical pulmonary research endpoints.

2.
Biofabrication ; 14(1)2021 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-34798628

RESUMEN

Microtia is a small, malformed external ear, which occurs at an incidence of 1-10 per 10 000 births. Autologous reconstruction using costal cartilage is the most widely accepted surgical microtia repair technique. Yet, the method involves donor-site pain and discomfort and relies on the artistic skill of the surgeon to create an aesthetic ear. This study employed novel tissue engineering techniques to overcome these limitations by developing a clinical-grade, 3D-printed biodegradable auricle scaffold that formed stable, custom-made neocartilage implants. The unique scaffold design combined strategically reinforced areas to maintain the complex topography of the outer ear and micropores to allow cell adhesion for the effective production of stable cartilage. The auricle construct was computed tomography (CT) scan-based composed of a 3D-printed clinical-grade polycaprolactone scaffold loaded with patient-derived chondrocytes produced from either auricular cartilage or costal cartilage biopsies combined with adipose-derived mesenchymal stem cells. Cartilage formation was measured within the constructin vitro, and cartilage maturation and stabilization were observed 12 weeks after its subcutaneous implantation into a murine model. The proposed technology is simple and effective and is expected to improve aesthetic outcomes and reduce patient discomfort.


Asunto(s)
Microtia Congénita , Células Madre Mesenquimatosas , Animales , Condrocitos , Microtia Congénita/cirugía , Cartílago Auricular , Humanos , Ratones , Impresión Tridimensional , Ingeniería de Tejidos/métodos , Andamios del Tejido
3.
Sci Adv ; 7(42): eabg3947, 2021 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-34644106

RESUMEN

Skeletal muscle insulin resistance is a main defect in type 2 diabetes (T2D), which is associated with impaired function and content of glucose transporter type 4 (GLUT4). GLUT4 overexpression in skeletal muscle tissue can improve glucose homeostasis. Therefore, we created an engineered muscle construct (EMC) composed of GLUT4-overexpressing (OEG4) cells. The ability of the engineered implants to reduce fasting glucose levels was tested in diet-induced obesity mice. Decrease and stabilization of basal glucose levels were apparent up to 4 months after implantation. Analysis of the retrieved constructs showed elevated expression of myokines and proteins related to metabolic processes. In addition, we validated the efficiency of OEG4-EMCs in insulin-resistant mice. Following high glucose load administration, mice showed improved glucose tolerance. Our data indicate that OEG4-EMC implant is an efficient mode for restoring insulin sensitivity and improving glucose homeostasis in diabetic mice. Such procedure is a potential innovative modality for T2D therapy.

4.
Adv Healthc Mater ; 4(15): 2220-8, 2015 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-26333178

RESUMEN

Perivascularly implanted matrix embedded endothelial cells (MEECs) are potent regulators of inflammation and intimal hyperplasia following vascular injuries. Endothelial cells (ECs) in collagen scaffolds adopt a reparative phenotype with significant therapeutic potential. Although the biology of MEECs is increasingly understood, tuning of scaffold properties to control cell-substrate interactions is less well-studied. It is hypothesized that modulating scaffold degradation would change EC phenotype. Scaffolds with differential degradation are prepared by cross-linking and predegradation. Vascular injury increases degradation and the presence of MEECs retards injury-mediated degradation. MEECs respond to differential scaffold properties with altered viability in vivo, suppressed smooth muscle cell (SMC) proliferation in vitro, and altered interleukin-6 and matrix metalloproteinase-9 expression. When implanted perivascularly to a murine carotid wire injury, tuned scaffolds change MEEC effects on vascular repair and inflammation. Live animal imaging enables real-time tracking of cell viability, inflammation, and scaffold degradation, affording an unprecedented understanding of interactions between cells, substrate, and tissue. MEEC-treated injuries improve endothelialization and reduce SMC hyperplasia over 14 d. These data demonstrate the potent role material design plays in tuning MEEC efficacy in vivo, with implications for the design of clinical therapies.


Asunto(s)
Colágeno/química , Células Endoteliales/citología , Andamios del Tejido/química , Lesiones del Sistema Vascular/terapia , Adulto , Animales , Comunicación Celular/efectos de los fármacos , Proliferación Celular , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Humanos , Interleucina-6/genética , Interleucina-6/metabolismo , Masculino , Metaloproteinasa 9 de la Matriz/genética , Metaloproteinasa 9 de la Matriz/metabolismo , Ratones , Miocitos del Músculo Liso/efectos de los fármacos , Miocitos del Músculo Liso/metabolismo , Fenotipo , Adulto Joven
5.
Nat Commun ; 6: 6208, 2015 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-25670235

RESUMEN

Nanostructured porous silicon (PSi) is emerging as a promising platform for drug delivery owing to its biocompatibility, degradability and high surface area available for drug loading. The ability to control PSi structure, size and porosity enables programming its in vivo retention, providing tight control over embedded drug release kinetics. In this work, the relationship between the in vitro and in vivo degradation of PSi under (pre)clinically relevant conditions, using breast cancer mouse model, is defined. We show that PSi undergoes enhanced degradation in diseased environment compared with healthy state, owing to the upregulation of reactive oxygen species (ROS) in the tumour vicinity that oxidize the silicon scaffold and catalyse its degradation. We further show that PSi degradation in vitro and in vivo correlates in healthy and diseased states when ROS-free or ROS-containing media are used, respectively. Our work demonstrates that understanding the governing mechanisms associated with specific tissue microenvironment permits predictive material performance.


Asunto(s)
Portadores de Fármacos/química , Nanoestructuras/química , Neoplasias/patología , Silicio/química , Animales , Línea Celular Tumoral , Fluorescencia , Humanos , Ratones , Neoplasias/metabolismo , Porosidad , Especies Reactivas de Oxígeno/metabolismo , Microambiente Tumoral
6.
Sci Transl Med ; 7(272): 272ra11, 2015 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-25632035

RESUMEN

A "one material fits all" mindset ignores profound differences in target tissues that affect their responses and reactivity. Yet little attention has been paid to the role of diseased tissue on material performance, biocompatibility, and healing capacity. We assessed material-tissue interactions with a prototypical adhesive material based on dendrimer/dextran and colon as a model tissue platform. Adhesive materials have high sensitivity to changes in their environment and can be exploited to probe and quantify the influence of even subtle modifications in tissue architecture and biology. We studied inflammatory colitis and colon cancer and found not only a difference in adhesion related to surface chemical interactions but also the existence of a complex interplay that determined the overall dendrimer/dextran biomaterial compatibility. Compatibility was contextual, not simply a constitutive property of the material, and was related to the extent and nature of immune cells in the diseased environment present before material implantation. We then showed how to use information about local alterations of the tissue microenvironment to assess disease severity. This in turn guided us to an optimal dendrimer/dextran formulation choice using a predictive model based on clinically relevant conditions.


Asunto(s)
Materiales Biocompatibles/química , Dendrímeros/química , Dextranos/química , Inflamación/metabolismo , Neoplasias/metabolismo , Aminas/química , Animales , Adhesión Celular , Colitis/patología , Colágeno/química , Colon/patología , Neoplasias del Colon/patología , Modelos Animales de Enfermedad , Tracto Gastrointestinal/química , Masculino , Ensayo de Materiales , Microscopía Fluorescente , Neutrófilos/metabolismo , Conejos , Ratas , Ratas Sprague-Dawley , Factor de Necrosis Tumoral alfa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...