Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Biol Chem ; 299(11): 105290, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37758001

RESUMEN

Toll-like and interleukin-1/18 receptor/resistance (TIR) domain-containing proteins function as important signaling and immune regulatory molecules. TIR domain-containing proteins identified in eukaryotic and prokaryotic species also exhibit NAD+ hydrolase activity in select bacteria, plants, and mammalian cells. We report the crystal structure of the Acinetobacter baumannii TIR domain protein (AbTir-TIR) with confirmed NAD+ hydrolysis and map the conformational effects of its interaction with NAD+ using hydrogen-deuterium exchange-mass spectrometry. NAD+ results in mild decreases in deuterium uptake at the dimeric interface. In addition, AbTir-TIR exhibits EX1 kinetics indicative of large cooperative conformational changes, which are slowed down upon substrate binding. Additionally, we have developed label-free imaging using the minimally invasive spectroscopic method 2-photon excitation with fluorescence lifetime imaging, which shows differences in bacteria expressing native and mutant NAD+ hydrolase-inactivated AbTir-TIRE208A protein. Our observations are consistent with substrate-induced conformational changes reported in other TIR model systems with NAD+ hydrolase activity. These studies provide further insight into bacterial TIR protein mechanisms and their varying roles in biology.


Asunto(s)
Acinetobacter baumannii , NAD , Acinetobacter baumannii/genética , Acinetobacter baumannii/metabolismo , Bacterias/metabolismo , Proteínas Bacterianas/metabolismo , Deuterio , Hidrolasas/metabolismo , Mamíferos/metabolismo , NAD/metabolismo , Dominios Proteicos
2.
J Chem Phys ; 158(8): 085104, 2023 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-36859102

RESUMEN

Despite more than a century of study, consensus on the molecular basis of allostery remains elusive. A comparison of allosteric and non-allosteric members of a protein family can shed light on this important regulatory mechanism, and the bacterial biotin protein ligases, which catalyze post-translational biotin addition, provide an ideal system for such comparison. While the Class I bacterial ligases only function as enzymes, the bifunctional Class II ligases use the same structural architecture for an additional transcription repression function. This additional function depends on allosterically activated homodimerization followed by DNA binding. In this work, we used experimental, computational network, and bioinformatics analyses to uncover distinguishing features that enable allostery in the Class II biotin protein ligases. Experimental studies of the Class II Escherichia coli protein indicate that catalytic site residues are critical for both catalysis and allostery. However, allostery also depends on amino acids that are more broadly distributed throughout the protein structure. Energy-based community network analysis of representative Class I and Class II proteins reveals distinct residue community architectures, interactions among the communities, and responses of the network to allosteric effector binding. Bioinformatics mutual information analyses of multiple sequence alignments indicate distinct networks of coevolving residues in the two protein families. The results support the role of divergent local residue community network structures both inside and outside of the conserved enzyme active site combined with distinct inter-community interactions as keys to the emergence of allostery in the Class II biotin protein ligases.


Asunto(s)
Aminoácidos , Biotina , Catálisis , Dominio Catalítico , Escherichia coli
3.
Nat Commun ; 11(1): 6204, 2020 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-33277506

RESUMEN

Fucosylation is important for the function of many proteins with biotechnical and medical applications. Alpha-fucosidases comprise a large enzyme family that recognizes fucosylated substrates with diverse α-linkages on these proteins. Lactobacillus casei produces an α-fucosidase, called AlfC, with specificity towards α(1,6)-fucose, the only linkage found in human N-glycan core fucosylation. AlfC and certain point mutants thereof have been used to add and remove fucose from monoclonal antibody N-glycans, with significant impacts on their effector functions. Despite the potential uses for AlfC, little is known about its mechanism. Here, we present crystal structures of AlfC, combined with mutational and kinetic analyses, hydrogen-deuterium exchange mass spectrometry, molecular dynamic simulations, and transfucosylation experiments to define the molecular mechanisms of the activities of AlfC and its transfucosidase mutants. Our results indicate that AlfC creates an aromatic subsite adjacent to the active site that specifically accommodates GlcNAc in α(1,6)-linkages, suggest that enzymatic activity is controlled by distinct open and closed conformations of an active-site loop, with certain mutations shifting the equilibrium towards open conformations to promote transfucosylation over hydrolysis, and provide a potentially generalizable framework for the rational creation of AlfC transfucosidase mutants.


Asunto(s)
Proteínas Bacterianas/química , Fucosa/química , Lacticaseibacillus casei/enzimología , Simulación de Dinámica Molecular , Conformación Proteica , alfa-L-Fucosidasa/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Dominio Catalítico , Fucosa/metabolismo , Glicosilación , Humanos , Inmunoglobulina G/química , Inmunoglobulina G/metabolismo , Cinética , Lacticaseibacillus casei/genética , Mutación , Polisacáridos/química , Polisacáridos/metabolismo , Especificidad por Sustrato , alfa-L-Fucosidasa/genética , alfa-L-Fucosidasa/metabolismo
4.
Biochemistry ; 59(6): 790-801, 2020 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-31899864

RESUMEN

In allostery, a signal from one site in a protein is transmitted to a second site to alter its function. Due to its ubiquity in biology and the potential for its exploitation in drug and protein design, the molecular basis of allosteric communication continues to be the subject of intense research. Although allosterically coupled sites are frequently characterized by disorder, how communication between disordered segments occurs remains obscure. Allosteric activation of Escherichia coli BirA dimerization occurs via coupled distant disorder-to-order transitions. In this work, combined structural and computational studies reveal an extensive residue network in BirA. Substitution of several network residues yields large perturbations to allostery. Force distribution analysis reveals that disruptions to the disorder-to-order transitions through amino acid substitution are manifested in shifts in the energy experienced by network residues as well as alterations in packing of an α-helix that plays a critical role in allostery. The combined results reveal a highly distributed allosteric mechanism that is robust to sequence change.


Asunto(s)
Regulación Alostérica/fisiología , Ligasas de Carbono-Nitrógeno/metabolismo , Proteínas de Escherichia coli/metabolismo , Simulación de Dinámica Molecular , Multimerización de Proteína/fisiología , Proteínas Represoras/metabolismo , Ligasas de Carbono-Nitrógeno/química , Proteínas de Escherichia coli/química , Estructura Secundaria de Proteína , Proteínas Represoras/química
5.
Proc Natl Acad Sci U S A ; 117(2): 1049-1058, 2020 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-31896582

RESUMEN

Targeting Clostridium difficile infection is challenging because treatment options are limited, and high recurrence rates are common. One reason for this is that hypervirulent C. difficile strains often have a binary toxin termed the C. difficile toxin, in addition to the enterotoxins TsdA and TsdB. The C. difficile toxin has an enzymatic component, termed CDTa, and a pore-forming or delivery subunit termed CDTb. CDTb was characterized here using a combination of single-particle cryoelectron microscopy, X-ray crystallography, NMR, and other biophysical methods. In the absence of CDTa, 2 di-heptamer structures for activated CDTb (1.0 MDa) were solved at atomic resolution, including a symmetric (SymCDTb; 3.14 Å) and an asymmetric form (AsymCDTb; 2.84 Å). Roles played by 2 receptor-binding domains of activated CDTb were of particular interest since the receptor-binding domain 1 lacks sequence homology to any other known toxin, and the receptor-binding domain 2 is completely absent in other well-studied heptameric toxins (i.e., anthrax). For AsymCDTb, a Ca2+ binding site was discovered in the first receptor-binding domain that is important for its stability, and the second receptor-binding domain was found to be critical for host cell toxicity and the di-heptamer fold for both forms of activated CDTb. Together, these studies represent a starting point for developing structure-based drug-design strategies to target the most severe strains of C. difficile.


Asunto(s)
ADP Ribosa Transferasas/química , ADP Ribosa Transferasas/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Toxinas Bacterianas/química , Toxinas Bacterianas/metabolismo , Clostridioides difficile/metabolismo , Enterotoxinas/química , Enterotoxinas/metabolismo , ADP Ribosa Transferasas/genética , Animales , Proteínas Bacterianas/genética , Sitios de Unión , Fenómenos Biofísicos , Chlorocebus aethiops , Microscopía por Crioelectrón , Cristalografía por Rayos X , Modelos Moleculares , Resonancia Magnética Nuclear Biomolecular , Conformación Proteica , Dominios Proteicos , Células Vero
6.
Biochem Soc Trans ; 46(6): 1577-1591, 2018 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-30381340

RESUMEN

Biotin, which serves as a carboxyl group carrier in reactions catalyzed by biotin-dependent carboxylases, is essential for life in most organisms. To function in carboxylate transfer, the vitamin must be post-translationally linked to a specific lysine residue on the biotin carboxyl carrier (BCC) of a carboxylase in a reaction catalyzed by biotin protein ligases. Although biotin addition is highly selective for any single carboxylase substrate, observations of interspecies biotinylation suggested little discrimination among the BCCs derived from the carboxylases of a broad range of organisms. Application of single turnover kinetic techniques to measurements of post-translational biotin addition reveals previously unappreciated selectivity that may be of physiological significance.


Asunto(s)
Biotina/metabolismo , Cinética , Procesamiento Proteico-Postraduccional , Especificidad por Sustrato
7.
EMBO J ; 37(13)2018 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-29724755

RESUMEN

Helicobacter pylori infects half of the world's population, and strains that encode the cag type IV secretion system for injection of the oncoprotein CagA into host gastric epithelial cells are associated with elevated levels of cancer. CagA translocation into host cells is dependent on interactions between the H. pylori adhesin protein HopQ and human CEACAMs. Here, we present high-resolution structures of several HopQ-CEACAM complexes and CEACAMs in their monomeric and dimeric forms establishing that HopQ uses a coupled folding and binding mechanism to engage the canonical CEACAM dimerization interface for CEACAM recognition. By combining mutagenesis with biophysical and functional analyses, we show that the modes of CEACAM recognition by HopQ and CEACAMs themselves are starkly different. Our data describe precise molecular mechanisms by which microbes exploit host CEACAMs for infection and enable future development of novel oncoprotein translocation inhibitors and H. pylori-specific antimicrobial agents.


Asunto(s)
Antígenos Bacterianos/fisiología , Antígenos CD/fisiología , Proteínas Bacterianas/fisiología , Moléculas de Adhesión Celular/fisiología , Helicobacter pylori/fisiología , Proteínas Oncogénicas/fisiología , Antígenos CD/química , Proteínas Bacterianas/química , Moléculas de Adhesión Celular/química , Células HEK293 , Humanos , Mutagénesis , Multimerización de Proteína , Transporte de Proteínas
8.
Biochemistry ; 57(7): 1119-1129, 2018 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-29355305

RESUMEN

Small molecules regulate transcription in both eukaryotes and prokaryotes by either enhancing or repressing assembly of transcription regulatory complexes. For allosteric transcription repressors, superrepressor mutants can exhibit increased sensitivity to small molecule corepressors. However, because many transcription regulatory complexes assemble in multiple steps, the superrepressor phenotype can reflect changes in any or all of the individual assembly steps. Escherichia coli biotin operon repression complex assembly, which responds to input biotin concentration, occurs via three coupled equilibria, including corepressor binding, holorepressor dimerization, and binding of the dimer to DNA. A genetic screen has yielded superrepressor mutants that repress biotin operon transcription in vivo at biotin concentrations much lower than those required by the wild type repressor. In this work, isothermal titration calorimetry and sedimentation measurements were used to determine the superrepressor biotin binding and homodimerization properties. The results indicate that, although all variants exhibit biotin binding affinities similar to that measured for BirAwt, five of the six superrepressors show altered homodimerization energetics. Molecular dynamics simulations suggest that the altered dimerization results from perturbation of an electrostatic network that contributes to allosteric activation of BirA for dimerization. Modeling of the multistep repression complex assembly for these proteins reveals that the altered sensitivity of the transcription response to biotin concentration is readily explained solely by the altered superrepressor homodimerization energetics. These results highlight how coupled equilibria enable alterations in a transcription regulatory response to input signal through an indirect mechanism.


Asunto(s)
Biotina/metabolismo , Ligasas de Carbono-Nitrógeno/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Mapas de Interacción de Proteínas , Proteínas Represoras/metabolismo , Regulación Alostérica , Ligasas de Carbono-Nitrógeno/química , Escherichia coli/química , Proteínas de Escherichia coli/química , Simulación de Dinámica Molecular , Unión Proteica , Conformación Proteica , Multimerización de Proteína , Proteínas Represoras/química , Termodinámica
9.
Biochemistry ; 56(34): 4478-4488, 2017 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-28718281

RESUMEN

Elucidation of the molecular details of allosteric communication between distant sites in a protein is key to understanding and manipulating many biological regulatory processes. Although protein disorder is acknowledged to play an important thermodynamic role in allostery, the molecular mechanisms by which this disorder is harnessed for long distance communication are known for a limited number of systems. Transcription repression by the Escherichia coli biotin repressor, BirA, is allosterically activated by binding of the small molecule effector biotinoyl-5'-AMP. The effector acts by promoting BirA dimerization, which is a prerequisite for sequence-specific binding to the biotin biosynthetic operon operator sequence. A 30 Å distance separates the effector binding and dimerization surfaces in BirA, and previous studies indicate that allostery is mediated, in part, by disorder-to-order transitions on the two coupled sites. In this work, combined experimental and computational methods have been applied to investigate the molecular basis of allosteric communication in BirA. Double-mutant cycle analysis coupled with thermodynamic measurements indicates functional coupling between residues in disordered loops on the two distant surfaces. All atom molecular dynamics simulations reveal that this coupling occurs through long distance reciprocal modulation of the structure and dynamics of disorder-to-order transitions on the two surfaces.


Asunto(s)
Adenosina Monofosfato/análogos & derivados , Biotina/análogos & derivados , Ligasas de Carbono-Nitrógeno/química , Proteínas de Escherichia coli/química , Escherichia coli/química , Simulación de Dinámica Molecular , Proteínas Represoras/química , Adenosina Monofosfato/química , Adenosina Monofosfato/genética , Adenosina Monofosfato/metabolismo , Regulación Alostérica/fisiología , Sustitución de Aminoácidos , Biotina/química , Biotina/genética , Biotina/metabolismo , Ligasas de Carbono-Nitrógeno/genética , Ligasas de Carbono-Nitrógeno/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Mutación Missense , Unión Proteica , Dominios Proteicos , Proteínas Represoras/genética , Proteínas Represoras/metabolismo
10.
Protein Sci ; 26(8): 1564-1573, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28466579

RESUMEN

Class II bifunctional biotin protein ligases (BirA), which catalyze post-translational biotinylation and repress transcription initiation, are broadly distributed in eubacteria and archaea. However, it is unclear if these proteins all share the same molecular mechanism of transcription regulation. In Escherichia coli the corepressor biotinoyl-5'-AMP (bio-5'-AMP), which is also the intermediate in biotin transfer, promotes operator binding and resulting transcription repression by enhancing BirA dimerization. Like E. coli BirA (EcBirA), Staphylococcus aureus, and Bacillus subtilis BirA (Sa and BsBirA) repress transcription in vivo in a biotin-dependent manner. In this work, sedimentation equilibrium measurements were performed to investigate the molecular basis of this biotin-responsive transcription regulation. The results reveal that, as observed for EcBirA, Sa, and BsBirA dimerization reactions are significantly enhanced by bio-5'-AMP binding. Thus, the molecular mechanism of the Biotin Regulatory System is conserved in the biotin repressors from these three organisms.


Asunto(s)
Adenosina Monofosfato/análogos & derivados , Bacillus subtilis/química , Biotina/análogos & derivados , Ligasas de Carbono-Nitrógeno/química , Proteínas de Escherichia coli/química , Escherichia coli/química , Proteínas Represoras/química , Staphylococcus aureus/química , Transcripción Genética , Adenosina Monofosfato/química , Adenosina Monofosfato/metabolismo , Secuencia de Aminoácidos , Bacillus subtilis/enzimología , Bacillus subtilis/genética , Sitios de Unión , Biotina/química , Biotina/metabolismo , Biotinilación , Ligasas de Carbono-Nitrógeno/genética , Ligasas de Carbono-Nitrógeno/metabolismo , Clonación Molecular , Secuencia Conservada , Escherichia coli/enzimología , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Expresión Génica , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Cinética , Ligandos , Modelos Moleculares , Unión Proteica , Conformación Proteica en Hélice alfa , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Staphylococcus aureus/enzimología , Staphylococcus aureus/genética , Termodinámica
11.
Elife ; 52016 09 24.
Artículo en Inglés | MEDLINE | ID: mdl-27664419

RESUMEN

Flagella are crucial for bacterial motility and pathogenesis. The flagellar capping protein (FliD) regulates filament assembly by chaperoning and sorting flagellin (FliC) proteins after they traverse the hollow filament and exit the growing flagellum tip. In the absence of FliD, flagella are not formed, resulting in impaired motility and infectivity. Here, we report the 2.2 Å resolution X-ray crystal structure of FliD from Pseudomonas aeruginosa, the first high-resolution structure of any FliD protein from any bacterium. Using this evidence in combination with a multitude of biophysical and functional analyses, we find that Pseudomonas FliD exhibits unexpected structural similarity to other flagellar proteins at the domain level, adopts a unique hexameric oligomeric state, and depends on flexible determinants for oligomerization. Considering that the flagellin filaments on which FliD oligomers are affixed vary in protofilament number between bacteria, our results suggest that FliD oligomer stoichiometries vary across bacteria to complement their filament assemblies.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Multimerización de Proteína , Pseudomonas aeruginosa/enzimología , Cristalografía por Rayos X , Flagelina/metabolismo , Modelos Moleculares , Conformación Proteica
12.
Biochemistry ; 55(2): 243-52, 2016 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-26678378

RESUMEN

Allosteric coupling in proteins is ubiquitous but incompletely understood, particularly in systems characterized by coupling over large distances. Binding of the allosteric effector, bio-5'-AMP, to the Escherichia coli biotin protein ligase, BirA, enhances the protein's dimerization free energy by -4 kcal/mol. Previous studies revealed that disorder-to-order transitions at the effector binding and dimerization sites, which are separated by 33 Å, are integral to functional coupling. Perturbations to the transition at the ligand binding site alter both ligand binding and coupled dimerization. Alanine substitutions in four loops on the dimerization surface yield a range of energetic effects on dimerization. A glycine to alanine substitution at position 142 in one of these loops results in a complete loss of allosteric coupling, disruption of the disorder-to-order transitions at both functional sites, and a decreased affinity for the effector. In this work, allosteric communication between the effector binding and dimerization surfaces in BirA was further investigated by performing isothermal titration calorimetry measurements on nine proteins with alanine substitutions in three dimerization surface loops. In contrast to BirAG142A, at 20 °C all variants bind to bio-5'-AMP with free energies indistinguishable from that measured for wild-type BirA. However, the majority of the variants exhibit altered heat capacity changes for effector binding. Moreover, the ΔCp values correlate with the dimerization free energies of the effector-bound proteins. These thermodynamic results, combined with structural information, indicate that allosteric activation of the BirA monomer involves formation of a network of intramolecular interactions on the dimerization surface in response to bio-5'-AMP binding at the distant effector binding site.


Asunto(s)
Ligasas de Carbono-Nitrógeno/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas Represoras/metabolismo , Adenosina Monofosfato/análogos & derivados , Adenosina Monofosfato/química , Adenosina Monofosfato/metabolismo , Regulación Alostérica , Biotina/análogos & derivados , Biotina/química , Biotina/metabolismo , Calorimetría , Ligasas de Carbono-Nitrógeno/química , Proteínas de Escherichia coli/química , Calor , Unión Proteica , Conformación Proteica , Proteínas Represoras/química , Termodinámica
13.
Proc Natl Acad Sci U S A ; 112(44): 13561-6, 2015 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-26483485

RESUMEN

Carcinoembryonic antigen-related cell adhesion molecules (CEACAMs) comprise a large family of cell surface adhesion molecules that bind to themselves and other family members to carry out numerous cellular functions, including proliferation, signaling, differentiation, tumor suppression, and survival. They also play diverse and significant roles in immunity and infection. The formation of CEACAM oligomers is caused predominantly by interactions between their N-terminal IgV domains. Although X-ray crystal structures of CEACAM IgV domain homodimers have been described, how CEACAMs form heterodimers or remain monomers is poorly understood. To address this key aspect of CEACAM function, we determined the crystal structures of IgV domains that form a homodimeric CEACAM6 complex, monomeric CEACAM8, and a heterodimeric CEACAM6-CEACAM8 complex. To confirm and quantify these interactions in solution, we used analytical ultracentrifugation to measure the dimerization constants of CEACAM homodimers and isothermal titration calorimetry to determine the thermodynamic parameters and binding affinities of CEACAM heterodimers. We found the CEACAM6-CEACAM8 heterodimeric state to be substantially favored energetically relative to the CEACAM6 homodimer. Our data provide a molecular basis for the adoption of the diverse oligomeric states known to exist for CEACAMs and suggest ways in which CEACAM6 and CEACAM8 regulate the biological functions of one another, as well as of additional CEACAMs with which they interact, both in cis and in trans.


Asunto(s)
Antígenos CD/química , Moléculas de Adhesión Celular/química , Multimerización de Proteína , Estructura Terciaria de Proteína , Secuencia de Aminoácidos , Antígenos CD/genética , Antígenos CD/metabolismo , Calorimetría/métodos , Moléculas de Adhesión Celular/genética , Moléculas de Adhesión Celular/metabolismo , Cristalografía por Rayos X , Células Epiteliales/metabolismo , Proteínas Ligadas a GPI/química , Proteínas Ligadas a GPI/genética , Proteínas Ligadas a GPI/metabolismo , Granulocitos/metabolismo , Células HEK293 , Humanos , Enlace de Hidrógeno , Cinética , Modelos Moleculares , Datos de Secuencia Molecular , Unión Proteica , Homología de Secuencia de Aminoácido
14.
Acta Crystallogr F Struct Biol Commun ; 71(Pt 9): 1169-75, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26323304

RESUMEN

CEACAM7 is a human cellular adhesion protein that is expressed on the surface of colon and rectum epithelial cells and is downregulated in colorectal cancers. It achieves cell adhesion through dimerization of the N-terminal IgV domain. The crystal structure of the N-terminal dimerization domain of CEACAM has been determined at 1.47 Šresolution. The overall fold of CEACAM7 is similar to those of CEACAM1 and CEACAM5; however, there are differences, the most notable of which is an insertion that causes the C'' strand to buckle, leading to the creation of a hydrogen bond in the dimerization interface. The Kdimerization for CEACAM7 determined by sedimentation equilibrium is tenfold tighter than that measured for CEACAM5. These findings suggest that the dimerization affinities of CEACAMs are modulated via sequence variation in the dimerization surface.


Asunto(s)
Antígeno Carcinoembrionario/química , Multimerización de Proteína , Secuencia de Aminoácidos , Proteínas Ligadas a GPI/química , Humanos , Datos de Secuencia Molecular , Péptidos/química , Estructura Terciaria de Proteína , Alineación de Secuencia
16.
J Biol Chem ; 290(20): 12929-40, 2015 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-25837254

RESUMEN

Arginine-aspartate-glycine (RGD) motifs are recognized by integrins to bridge cells to one another and the extracellular matrix. RGD motifs typically reside in exposed loop conformations. X-ray crystal structures of the Helicobacter pylori protein CagL revealed that RGD motifs can also exist in helical regions of proteins. Interactions between CagL and host gastric epithelial cell via integrins are required for the translocation of the bacterial oncoprotein CagA. Here, we have investigated the molecular basis of the CagL-host cell interactions using structural, biophysical, and functional analyses. We solved an x-ray crystal structure of CagL that revealed conformational changes induced by low pH not present in previous structures. Using analytical ultracentrifugation, we found that pH-induced conformational changes in CagL occur in solution and not just in the crystalline environment. By designing numerous CagL mutants based on all available crystal structures, we probed the functional roles of CagL conformational changes on cell surface integrin engagement. Together, our data indicate that the helical RGD motif in CagL is buried by a neighboring helix at low pH to inhibit CagL binding to integrin, whereas at neutral pH the neighboring helix is displaced to allow integrin access to the CagL RGD motif. This novel molecular mechanism of regulating integrin-RGD motif interactions by changes in the chemical environment provides new insight to H. pylori-mediated oncogenesis.


Asunto(s)
Proteínas Bacterianas/química , Helicobacter pylori/química , Secuencias de Aminoácidos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Transformación Celular Neoplásica , Cristalografía por Rayos X , Helicobacter pylori/genética , Helicobacter pylori/metabolismo , Humanos , Concentración de Iones de Hidrógeno , Relación Estructura-Actividad
17.
J Mol Biol ; 427(8): 1695-704, 2015 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-25746672

RESUMEN

Intrinsic disorder provides a means of maximizing allosteric coupling in proteins. However, the mechanisms by which the disorder functions in allostery remain to be elucidated. Small ligand, bio-5'-AMP, binding and dimerization of the Escherichia coli biotin repressor are allosterically coupled. Folding of a disordered loop in the allosteric effector binding site is required to realize the full coupling free energy of -4.0 ± 0.3 kcal/mol observed in the wild-type protein. Alanine substitution of a glycine residue on the dimerization surface that does not directly contribute to the dimerization interface completely abolishes this coupling. In this work, the structure of this variant, solved by X-ray crystallography, reveals a monomeric corepressor-bound protein. In the structure loops, neither of which contains the alanine substitution, on both the dimerization and effector binding surfaces that are folded in the corepressor-bound wild-type protein are disordered. The structural data combined with functional measurements indicate that allosteric coupling between ligand binding and dimerization in BirA (E. coli biotin repressor/biotin protein ligase) is achieved via reciprocal communication of disorder-to-order transitions on two distant functional surfaces.


Asunto(s)
Ligasas de Carbono-Nitrógeno/química , Ligasas de Carbono-Nitrógeno/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/química , Escherichia coli/metabolismo , Proteínas Represoras/química , Proteínas Represoras/metabolismo , Adenosina Monofosfato/análogos & derivados , Adenosina Monofosfato/metabolismo , Regulación Alostérica , Sitio Alostérico , Biotina/análogos & derivados , Biotina/metabolismo , Ligasas de Carbono-Nitrógeno/genética , Cristalografía por Rayos X , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Ligandos , Modelos Moleculares , Mutación Puntual , Unión Proteica , Conformación Proteica , Mapas de Interacción de Proteínas , Multimerización de Proteína , Proteínas Represoras/genética
18.
Protein Sci ; 24(2): 200-11, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25407143

RESUMEN

Folding coupled to binding is ubiquitous in biology. Nevertheless, the relationship of sequence to function for protein segments that undergo coupled binding and folding remains to be determined. Specifically, it is not known if the well-established rules that govern protein folding and stability are relevant to ligand-linked folding transitions. Upon small ligand biotinoyl-5'-AMP (bio-5'-AMP) binding the Escherichia coli protein BirA undergoes a disorder-to-order transition that results in formation of a network of packed hydrophobic side chains. Ligand binding is also allosterically coupled to protein association, with bio-5'-AMP binding enhancing the dimerization free energy by -4.0 kcal/mol. Previous studies indicated that single alanine replacements in a three residue hydrophobic cluster that contributes to the larger network disrupt cluster formation, ligand binding, and allosteric activation of protein association. In this work, combined equilibrium and kinetic measurements of BirA variants with alanine substitutions in the entire hydrophobic network reveal large functional perturbations resulting from any single substitution and highly non-additive effects of multiple substitutions. These substitutions also disrupt ligand-linked folding. The combined results suggest that, analogous to protein folding, functional disorder-to-order linked to binding requires optimal packing of the relevant hydrophobic side chains that contribute to the transition. The potential for many combinations of residues to satisfy this requirement implies that, although functionally important, segments of homologous proteins that undergo folding linked to binding can exhibit sequence divergence.


Asunto(s)
Ligasas de Carbono-Nitrógeno/química , Ligasas de Carbono-Nitrógeno/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/química , Escherichia coli/metabolismo , Proteínas Represoras/química , Proteínas Represoras/metabolismo , Adenosina Monofosfato/análogos & derivados , Adenosina Monofosfato/metabolismo , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Biotina/análogos & derivados , Biotina/metabolismo , Ligasas de Carbono-Nitrógeno/genética , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Interacciones Hidrofóbicas e Hidrofílicas , Ligandos , Modelos Moleculares , Datos de Secuencia Molecular , Unión Proteica , Conformación Proteica , Pliegue de Proteína , Proteínas Represoras/genética , Termodinámica
19.
Biochemistry ; 52(38): 6595-600, 2013 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-23984950

RESUMEN

Solvent reorganization can contribute significantly to the energetics of protein-protein interactions. However, our knowledge of the magnitude of the energetic contribution is limited, in part, by a dearth of quantitative experimental measurements. The biotin repressor forms a homodimer as a prerequisite to DNA binding to repress transcription initiation. At 20 °C, the dimerization reaction, which is thermodynamically coupled to binding of a small ligand, bio-5'-AMP, is characterized by a Gibbs free energy of -7 kcal/mol. This modest net dimerization free energy reflects underlying, very large opposing enthalpic and entropic driving forces of 41 ± 3 and -48 ± 3 kcal/mol, respectively. The thermodynamics have been interpreted as indicating coupling of solvent release to dimerization. In this work, this interpretation has been investigated by measuring the effect of replacing H2O with D2O on the dimerization thermodynamics. Sedimentation equilibrium measurements performed at 20 °C reveal a solvent isotope effect of -1.5 kcal/mol on the Gibbs free energy of dimerization. Analysis of the temperature dependence of the reaction in D2O indicates enthalpic and entropic contributions of 28 and -37 kcal/mol, respectively, considerably smaller than the values measured in H2O. These large solvent isotope perturbations to the thermodynamics are consistent with a significant contribution of solvent release to the dimerization reaction.


Asunto(s)
Ligasas de Carbono-Nitrógeno/química , Óxido de Deuterio/farmacología , Proteínas de Escherichia coli/química , Multimerización de Proteína , Proteínas Represoras/química , Solventes/farmacología , Adenosina Monofosfato/análogos & derivados , Adenosina Monofosfato/química , Biotina/análogos & derivados , Biotina/química , Óxido de Deuterio/química , Unión Proteica , Multimerización de Proteína/efectos de los fármacos , Termodinámica , Agua/química
20.
J Mol Biol ; 425(22): 4584-94, 2013 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-23896299

RESUMEN

Protein partner exchange plays a key role in regulating many biological switches. Although widespread, the mechanisms dictating protein partner identity and, therefore, the outcome of a switch have been determined for a limited number of systems. The Escherichia coli protein BirA undergoes a switch between posttranslational biotin attachment and transcription repression in response to cellular biotin demand. Moreover, the functional switch reflects formation of alternative mutually exclusive protein:protein interactions by BirA. Previous studies provided a set of alanine-substituted BirA variants with altered kinetic and equilibrium parameters of forming these interactions. In this work, DNase I footprinting measurements were employed to investigate the consequences of these altered properties for the outcome of the BirA functional switch. The results support a mechanism in which BirA availability for DNA binding and, therefore, transcription repression is controlled by the rate of the competing protein:protein interaction. However, occupancy of the transcriptional regulatory site on DNA by BirA is exquisitely tuned by the equilibrium constant governing its homodimerization.


Asunto(s)
Modelos Biológicos , Proteínas/química , Proteínas/metabolismo , Transcripción Genética , Acetil-CoA Carboxilasa/metabolismo , Biotina/química , Biotina/genética , Biotina/metabolismo , Ligasas de Carbono-Nitrógeno/química , Ligasas de Carbono-Nitrógeno/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Acido Graso Sintasa Tipo II/metabolismo , Regulación Bacteriana de la Expresión Génica , Cinética , Modelos Moleculares , Operón , Unión Proteica , Conformación Proteica , Multimerización de Proteína , Proteínas Represoras/química , Proteínas Represoras/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...