Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Microb Ecol ; 86(4): 2894-2903, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37632540

RESUMEN

Peatlands store approximately one-half of terrestrial soil carbon and one-tenth of non-glacial freshwater. Some of these important ecosystems are located near heavy metal emitting smelters. To improve the understanding of smelter impacts and potential recovery after initial pollution controls in the 1970s (roughly 50 years of potential recovery), we sampled peatlands along a distance gradient of 134 km from a smelter in Sudbury, Ontario, Canada, an area with over a century of nickel (Ni) and copper (Cu) mining activity. This work is aimed at evaluating potential shifts in bacterial and archaeal community structures in Sphagnum moss and its underlying peat within smelter-impacted poor fens. In peat, total Ni and Cu concentrations were higher (0.062-0.067 and 0.110-0.208 mg/g, respectively) at sites close to the smelter and exponentially dropped with distance from the smelter. This exponential decrease in Ni concentrations was also observed in Sphagnum. 16S rDNA amplicon sequencing showed that peat and Sphagnum moss host distinct microbiomes with peat accommodating a more diverse community structure. The microbiomes of Sphagnum were dominated by Proteobacteria (62.5%), followed by Acidobacteria (11.9%), with no observable trends with distance from the smelter. Dominance of Acidobacteria (32.4%) and Proteobacteria (29.6%) in peat was reported across all sites. No drift in taxonomy was seen across the distance gradient or from the reference sites, suggesting a potential microbiome recovery toward that of the reference peatlands microbiomes after decades of pollution controls. These results advance the understanding of peat and Sphagnum moss microbiomes, as well as depict the sensitivities and the resilience of peatland ecosystems.


Asunto(s)
Metales Pesados , Sphagnopsida , Ecosistema , Suelo/química , Ontario
2.
Environ Pollut ; 320: 121102, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36669721

RESUMEN

Peatlands are unique habitats that function as a carbon (C) sink and an archive of atmospheric metal deposition. Sphagnum mosses are key components of peatlands but can be adversely impacted by air pollution potentially affecting rates of C and metal accumulation in peat. In this study we evaluate how the loss of Sphagnum in peatlands close to a copper (Cu) and nickel (Ni) smelter in Sudbury, Ontario affected C accumulation and metal profiles. The depth of accumulated peat formed during the 100+ year period of smelter activities also increased with distance from the smelter. Concurrently, peat bulk density decreased with distance from the smelter, which resulted in relatively similar average rates of apparent C accumulation (32-46 g/m2/yr). These rates are within the range of published values despite the historically high pollution loadings. Surface peat close to the smelters was greatly enriched in Cu and Ni, and Cu profiles in dated peat cores generally coincide with known pollution histories much better than Ni that increased well before the beginning of smelter activities likely a result of post-deposition mobility in peat cores.


Asunto(s)
Carbono , Sphagnopsida , Ontario , Monitoreo del Ambiente/métodos , Metales , Níquel/análisis , Suelo
3.
Sci Total Environ ; 760: 143393, 2021 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-33213923

RESUMEN

Application of stable soil amendments is often the key to successful phytostabilization and rehabilitation of mine tailings, and microbial guilds are primary drivers of many geochemical processes promoted by these amendments. Field studies were set up at a tailings management area near Sudbury, Ontario to examine performance of blends of lime stabilized municipal biosolids and compost at nine different rates over thick (1 m) municipal compost covers planted with agricultural crops. Based on biogeochemical variability of the substrates four and ten years after application of the initial compost cover, the experimental plots could be classified into three categories: "Low" rate (0-100 t ha-1 biosolids), "Medium" rate (200-800 t ha-1), and "High" rate (1600-3200 t ha-1) treatments. The addition of biosolids materials to the thick compost cover at rates higher than 100 t ha-1 significantly reduced C:N ratio of the substrates, available phosphorus, and some of the nutrient cations, while notably increasing inorganic carbon and the potential solubility of Ni and Cu. This suggests that increasing biosolids application rates may not equivalently ameliorate soil quality and geochemical stability. Correspondingly, microbial communities were altered by biosolids additions, further intensifying the negative impacts of biosolids on long-term efficiency of the initial compost cover. Abundance of cellulose, hemicellulose, and lignocellulose decomposers (as key drivers of mineralization and humification) was significantly reduced by "Medium" and "High" rate treatments. Most DNA sequences with high affinity to denitrifiers were detected in "High" rate treatments where geochemical conditions were optimal for higher microbial denitrification activities. These findings have implications for improving the long-term efficiency of reclamation and environmental management programs in mine tailings of northern temperate climates.


Asunto(s)
Compostaje , Microbiota , Contaminantes del Suelo , Biosólidos , Ontario , Suelo , Contaminantes del Suelo/análisis
4.
Ecotoxicology ; 29(4): 417-428, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32166695

RESUMEN

The use of wastewater for irrigation in agroforestry is cost-effective for water management. It is well established that rhizospheric microorganisms such as N2-fixing bacteria are able to modulate rhizobioaugmention and to boost phyoremediation process. To date, no study has been conducted to evaluate biological effects of rhizobioaugmentation in Casuarina glauca trees induced by their symbiont N-fixing actinobacteria of the genus Frankia. The objective of the present study was to evaluate the main effects of rhizobioaugmentation on the biological activity in the C. glauca's rhizosphere and on C. glauca growth in soils irrigated with industrial wastewater. Two Frankia strains (BMG5.22 and BMG5.23) were used in a single or dual inoculations of C. glauca seedlings irrigated with industrial wastewater. Soil enzymes activity related to carbon, phosphorus, sulfur and nitrogen cycling were measured. Results revealed that the BMG5.22 Frankia strain increases significantly the size (dry weight) of C. glauca shoots and roots while dual inoculation increased significantly the root length. Surprisingly, ß-glucosidase (BG), cellobiohydrolase (CBH), ß-N-acetylglucosaminidase (NAGase), aryl sulfatase (AS), acid phosphatase (AP), alkaline phosphatase (AlP), glycine aminopeptidase (GAP), leucine aminopeptidase (LAP), and peroxidase (PER) activity in the rhizosphere decreased significantly in soils treated with the two strains of symbionts. This suggests no positive correlations between enzymatic activity and C. glauca growth.


Asunto(s)
Riego Agrícola/métodos , Fagales/microbiología , Frankia/fisiología , Rizosfera , Aguas Residuales/microbiología
5.
J Plant Physiol ; 239: 92-108, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31255944

RESUMEN

Acclimation by plants to hypoxia and anoxia is of importance in various ecological systems, and especially for roots in waterlogged soil. We present evidence for acclimation by roots via 'anoxic' cores rather than being triggered by O2 sensors. The evidence for 'anoxic' cores comes from radial O2 profiles across maize roots and associated metabolic changes such as increases in the 'anaerobic enzymes' ADH and PDC in the 'anoxic' core, and inhibition of Cl- transport to the xylem. These cores are predicted to develop within 15-20 min after sudden transfer of a root to hypoxia, so that the cores are 'anoxically-shocked'. We suggest that 'anoxic' cores could emanate a signal(s), such as ACC the precursor of ethylene and/or propagation of a 'Ca2+ wave', to other tissue zones. There, the signalling would result in acclimation of the tissues to energy crisis metabolism. An O2 diffusion model for tissues with an 'anoxic' core, indicates that the phytoglobin-nitric oxide (Pgb-NO) cycle would only be engaged in a thin 'shell' (annulus) of tissue surrounding the 'anoxic' core, and so would only contribute small amounts of ATP on a whole organ basis (e.g. whole roots). A key feature within this annulus of tissue, where O2 is likely to be limiting, is that the ratio (ATP formed) / (O2 consumed) is 5-6, both when the NAD(P)H of glycolysis is converted to NAD(P)+ by the Pgb-NO cycle or by the TCA cycle linked to the electron transport chain. The main function of the Pgb-NO cycle may be the modulating of NO levels and O2 scavenging, thus preventing oxidative damage. We speculate that an 'anoxic' core in hypoxic plant organs may have a particularly high tolerance to anoxia because cells might receive a prolonged supply of carbohydrates and/or ATP from the regions still receiving sufficient O2 for oxidative phosphorylation. Severely hypoxic or 'anoxic' cores are well documented, but much research on responses of roots to hypoxia is still based on bulk tissue analyses. More research is needed on the interaction between 'anoxic' cores and tissues still receiving sufficient O2 for oxidative phosphorylation, both during a hypoxic exposure and during subsequent anoxia of the tissue/organ as a whole.


Asunto(s)
Aclimatación/fisiología , Metabolismo Energético , Óxido Nítrico/metabolismo , Oxígeno/metabolismo , Proteínas de Plantas/metabolismo , Raíces de Plantas/metabolismo , Anaerobiosis
6.
J Environ Manage ; 228: 93-102, 2018 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-30212679

RESUMEN

A growth chamber trial was conducted to investigate the effects of blends of pulp and paper mill residuals and forest humus on soil properties, microbial communities and germination rate and biomass production of annual ryegrass (Lolium multiflorum) in both acid-producing and neutral to mildly alkaline mine tailings in a mine reclamation context. The organic residual amendments improved the nutritional status of the tailings substrates, and increased pH in acid-generating tailings, leading to higher germination rates and improved plant growth. A trace addition (<0.02% of sludge by dry weight) of natural forest floor material as a microbial inoculum to the sludge could increase plant biomass up to four-fold. The effects of sludge application on bioavailability of metals were variable, with the concentration of soluble copper (Cu) and nickel (Ni) increasing in some of the substrates following organic amendments. Addition of paper mill residuals to mine tailings modified the microbial communities observed in the oligotrophic tailings with the majority of DNA sequences in the sludge amended substrates being found to be closely related to heterotrophic bacterial species rather than the chemolithotrophic communities that dominate tailings environments.


Asunto(s)
Inoculantes Agrícolas/metabolismo , Cobre/química , Metales/química , Contaminantes del Suelo/análisis , Inoculantes Agrícolas/química , Bacterias , Biomasa , Bosques , Desarrollo de la Planta , Plantas , Aguas del Alcantarillado/análisis , Aguas del Alcantarillado/química , Suelo
7.
J Magn Reson ; 223: 61-3, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22967889

RESUMEN

The longitudinal relaxation time of (79)Br nuclei in KBr is field independent, between 4.7 T and 14.1 T. The results suggest that inconsistencies in the literature are due to differences in the experimental set-ups. The limitations of KBr as temperature calibrant are discussed.

8.
J Chem Phys ; 137(11): 114201, 2012 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-22998255

RESUMEN

Static and magic-angle spinning (11)B nuclear magnetic resonance (NMR) data at 4.7 T and 8.5 T have been obtained under cryogenic conditions on a diluted sample of magnesium diboride powder in the normal and superconducting state. The data provide accurate information on the magnetic shift and longitudinal relaxation time down to a temperature of 8 K, with a resolution improvement over the entire temperature range. The onset of superconductivity is unaffected by the sample rotation, as revealed by a steep variation of the magnetic shift just below the critical temperature.


Asunto(s)
Compuestos de Boro/química , Boro/química , Compuestos de Magnesio/química , Espectroscopía de Resonancia Magnética/normas , Estándares de Referencia , Temperatura
9.
J Magn Reson ; 212(2): 460-3, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21906982

RESUMEN

The accurate temperature measurement of solid samples under magic-angle spinning (MAS) is difficult in the cryogenic regime. It has been demonstrated by Thurber et al. (J. Magn. Reson., 196 (2009) 84-87) [10] that the temperature dependent spin-lattice relaxation time constant of (79)Br in KBr powder can be useful for measuring sample temperature under MAS over a wide temperature range (20-296 K). However the value of T(1) exceeds 3 min at temperatures below 20K, which is inconveniently long. In this communication, we show that the spin-lattice relaxation time constant of (127)I in CsI powder can be used to accurately measure sample temperature under MAS within a reasonable experimental time down to 10 K.


Asunto(s)
Cesio/química , Yoduros/química , Yodo/química , Espectroscopía de Resonancia Magnética/instrumentación , Termómetros , Bromuros/química , Calibración , Frío , Isótopos de Yodo
10.
New Phytol ; 190(2): 431-41, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21118258

RESUMEN

• Some recent data on O(2) scavenging by root segments showed a two-phase reduction in respiration rate starting at/above 21 kPa O(2) in the respirometer medium. The initial decline was attributed to a down-regulation of respiration, involving enzymes other than cytochrome oxidase, and interpreted as a means of conserving O(2). As this appeared to contradict earlier findings, we sought to clarify the position by mathematical modelling of the respirometer system. • The Fortran-based model accommodated the multicylindrical diffusive and respiratory characteristics of roots and the kinetics of the scavenging process. Output included moving images and data files of respiratory activity and [O(2)] from root centre to respirometer medium. • With respiration at any locus following a mitochondrial cytochrome oxidase O(2) dependence curve (the Michaelis-Menten constant K(m) = 0.0108 kPa; critical O(2) pressure, 1-2 kPa), the declining rate of O(2) consumption proved to be biphasic: an initial, long semi-linear part, reflecting the spread of severe hypoxia within the stele, followed by a short curvilinear fall, reflecting its extension through the pericycle and cortex. • We conclude that the initial respiratory decline in root respiration recently noted in respirometry studies is attributable to the spread of severe hypoxia from the root centre, rather than a conservation of O(2) by controlled down-regulation of respiration based on O(2) sensors.


Asunto(s)
Complejo IV de Transporte de Electrones/metabolismo , Modelos Biológicos , Oxígeno/metabolismo , Pisum sativum/enzimología , Pisum sativum/metabolismo , Presión , Hipoxia de la Célula , Respiración de la Célula , Especificidad de Órganos , Consumo de Oxígeno , Pisum sativum/citología , Raíces de Plantas/anatomía & histología , Raíces de Plantas/citología , Raíces de Plantas/metabolismo , Piruvatos/metabolismo , Temperatura
11.
Ann Bot ; 103(2): 281-93, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18819952

RESUMEN

BACKGROUND AND AIMS: Respiratory critical oxygen pressures (COPR) determined from O(2)-depletion rates in media bathing intact or excised roots are unreliable indicators of respiratory O(2)-dependency in O(2)-free media and wetlands. A mathematical model was used to help illustrate this, and more relevant polarographic methods for determining COPR in roots of intact plants are discussed. METHODS: Cortical [O(2)] near the root apex was monitored indirectly (pea seedlings) from radial oxygen losses (ROL) using sleeving Pt electrodes, or directly (maize) using microelectrodes; [O(2)] in the root was controlled by manipulating [O(2)] around the shoots. Mathematical modelling of radial diffusive and respiratory properties of roots used Michaelis-Menten enzyme kinetics. KEY RESULTS: Respiration declined only when the O(2) partial pressure (OPP) in the cortex of root tips fell below 0.5-4.5 kPa, values consistent with depressed respiration near the centre of the stele as confirmed by microelectrode measurements and mathematical modelling. Modelling predictions suggested that the OPP of a significant core at the centre of roots could be below the usual detection limits of O(2)-microelectrodes but still support some aerobic respiration. CONCLUSIONS: In O(2)-free media, as in wetlands, the COPR for roots is likely to be quite low, dependent upon the respiratory demands, dimensions and diffusion characteristics of the stele/stelar meristem and the enzyme kinetics of cytochrome oxidase. Roots of non-wetland plants may not differ greatly in their COPRs from those of wetland species. There is a possibility that trace amounts of O(2) may still be present in stelar 'anaerobic' cores where fermentation is induced at low cortical OPPs.


Asunto(s)
Manometría/métodos , Oxígeno/farmacología , Raíces de Plantas/fisiología , Presión , Respiración de la Célula , Difusión , Modelos Biológicos , Consumo de Oxígeno , Presión Parcial , Pisum sativum/fisiología , Brotes de la Planta/fisiología , Zea mays/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...