Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
iScience ; 27(5): 109789, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38746662

RESUMEN

Mitochondrial function relies on the coordinated transcription of mitochondrial and nuclear genomes to assemble respiratory chain complexes. Across species, the SIN3 coregulator influences mitochondrial functions, but how its loss impacts mitochondrial homeostasis and metabolism in the context of a whole organism is unknown. Exploring this link is important because SIN3 haploinsufficiency causes intellectual disability/autism syndromes and SIN3 plays a role in tumor biology. Here we show that loss of C. elegans SIN-3 results in transcriptional deregulation of mitochondrial- and nuclear-encoded mitochondrial genes, potentially leading to mito-nuclear imbalance. Consistent with impaired mitochondrial function, sin-3 mutants show extensive mitochondrial fragmentation by transmission electron microscopy (TEM) and in vivo imaging, and altered oxygen consumption. Metabolomic analysis of sin-3 mutant animals revealed a mitochondria stress signature and deregulation of methionine flux, resulting in decreased S-adenosyl methionine (SAM) and increased polyamine levels. Our results identify SIN3 as a key regulator of mitochondrial dynamics and metabolic flux, with important implications for human pathologies.

2.
MicroPubl Biol ; 20242024.
Artículo en Inglés | MEDLINE | ID: mdl-38808193

RESUMEN

The SET-2 /SET1 histone H3K4 methyltransferase and RNAi pathway components are required to maintain fertility across generations in C. elegans . SET-2 preserves the germline transcriptional program transgenerationally, and RNAi pathways rely on small RNAs to establish and maintain transgenerational gene silencing. We investigated whether the functionality of RNAi-induced transgenerational silencing and the composition of pools of endogenous small RNA are affected by the absence of SET-2 . Our results suggest that defects in RNAi pathways are not responsible for the transcriptional misregulation observed in the absence of SET-2 .

3.
Development ; 150(21)2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37818613

RESUMEN

The transcriptional co-regulator SIN3 influences gene expression through multiple interactions that include histone deacetylases. Haploinsufficiency and mutations in SIN3 are the underlying cause of Witteveen-Kolk syndrome and related intellectual disability and autism syndromes, emphasizing its key role in development. However, little is known about the diversity of its interactions and functions in developmental processes. Here, we show that loss of SIN-3, the single SIN3 homolog in Caenorhabditis elegans, results in maternal-effect sterility associated with de-regulation of the germline transcriptome, including de-silencing of X-linked genes. We identify at least two distinct SIN3 complexes containing specific histone deacetylases and show that they differentially contribute to fertility. Single-cell, single-molecule fluorescence in situ hybridization reveals that in sin-3 mutants the X chromosome becomes re-expressed prematurely and in a stochastic manner in individual germ cells, suggesting a role for SIN-3 in its silencing. Furthermore, we identify histone residues whose acetylation increases in the absence of SIN-3. Together, this work provides a powerful framework for the in vivo study of SIN3 and associated proteins.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Histona Desacetilasas , Complejo Correpresor Histona Desacetilasa y Sin3 , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Células Germinativas/metabolismo , Histona Desacetilasas/genética , Histona Desacetilasas/metabolismo , Histonas/metabolismo , Hibridación Fluorescente in Situ , Cromosoma X/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Complejo Correpresor Histona Desacetilasa y Sin3/genética , Complejo Correpresor Histona Desacetilasa y Sin3/metabolismo
4.
Nucleic Acids Res ; 47(21): 11164-11180, 2019 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-31602465

RESUMEN

The CFP1 CXXC zinc finger protein targets the SET1/COMPASS complex to non-methylated CpG rich promoters to implement tri-methylation of histone H3 Lys4 (H3K4me3). Although H3K4me3 is widely associated with gene expression, the effects of CFP1 loss vary, suggesting additional chromatin factors contribute to context dependent effects. Using a proteomics approach, we identified CFP1 associated proteins and an unexpected direct link between Caenorhabditis elegans CFP-1 and an Rpd3/Sin3 small (SIN3S) histone deacetylase complex. Supporting a functional connection, we find that mutants of COMPASS and SIN3 complex components genetically interact and have similar phenotypic defects including misregulation of common genes. CFP-1 directly binds SIN-3 through a region including the conserved PAH1 domain and recruits SIN-3 and the HDA-1/HDAC subunit to H3K4me3 enriched promoters. Our results reveal a novel role for CFP-1 in mediating interaction between SET1/COMPASS and a Sin3S HDAC complex at promoters.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/embriología , Proteínas de Unión al ADN/metabolismo , N-Metiltransferasa de Histona-Lisina/metabolismo , Complejos Multiproteicos/fisiología , Complejo Correpresor Histona Desacetilasa y Sin3/metabolismo , Transactivadores/metabolismo , Animales , Animales Modificados Genéticamente , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Unión al ADN/genética , Embrión no Mamífero , N-Metiltransferasa de Histona-Lisina/fisiología , Complejos Multiproteicos/metabolismo , Unión Proteica
5.
Cell Rep ; 9(2): 443-50, 2014 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-25310986

RESUMEN

Histone H3 Lys 4 methylation (H3K4me) is deposited by the conserved SET1/MLL methyltransferases acting in multiprotein complexes, including Ash2 and Wdr5. Although individual subunits contribute to complex activity, how they influence gene expression in specific tissues remains largely unknown. In Caenorhabditis elegans, SET-2/SET1, WDR-5.1, and ASH-2 are differentially required for germline H3K4 methylation. Using expression profiling on germlines from animals lacking set-2, ash-2, or wdr-5.1, we show that these subunits play unique as well as redundant functions in order to promote expression of germline genes and repress somatic genes. Furthermore, we show that in set-2- and wdr-5.1-deficient germlines, somatic gene misexpression is associated with conversion of germ cells into somatic cells and that nuclear RNAi acts in parallel with SET-2 and WDR-5.1 to maintain germline identity. These findings uncover a unique role for SET-2 and WDR-5.1 in preserving germline pluripotency and underline the complexity of the cellular network regulating this process.


Asunto(s)
Células Madre Adultas/metabolismo , Caenorhabditis elegans/metabolismo , Diferenciación Celular , N-Metiltransferasa de Histona-Lisina/metabolismo , Células Madre Pluripotentes/metabolismo , Células Madre Adultas/citología , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/crecimiento & desarrollo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , N-Metiltransferasa de Histona-Lisina/genética , Células Madre Pluripotentes/citología , Interferencia de ARN
6.
Proc Natl Acad Sci U S A ; 111(16): 5956-61, 2014 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-24715729

RESUMEN

Cellular adaptation to environmental changes and stress relies on a wide range of regulatory mechanisms that are tightly controlled at several levels, including transcription. Chromatin structure and chromatin binding proteins are important factors contributing to the transcriptional response to stress. However, it remains largely unknown to what extent specific chromatin factors influence the response to distinct forms of stress in a developmental context. One of the best characterized stress response pathways is the unfolded protein response (UPR), which is activated by accumulation of misfolded proteins in the endoplasmic reticulum (ER). Here, we show that Caenorhabditis elegans heterochromatin protein like-2 (HPL-2), the homolog of heterochromatin protein 1 (HP1), down-regulates the UPR in the intestine. Inactivation of HPL-2 results in an enhanced resistance to ER stress dependent on the X-box binding protein 1 (XBP-1)/inositol requiring enzyme 1 branch of the UPR and the closely related process of autophagy. Increased resistance to ER stress in animals lacking HPL-2 is associated with increased basal levels of XBP-1 activation and ER chaperone expression under physiological conditions, which may in turn activate an adaptive response known as ER hormesis. HPL-2 expression in intestinal cells is sufficient to rescue stress resistance, whereas expression in neuronal cells negatively influenced the ER stress response through a cell-nonautonomous mechanism. We further show that the retinoblastoma protein homolog LIN-35 and the LIN-13 zinc finger protein act in the same pathway as HPL-2 to limit the ER stress response. Altogether, our results point to multiple functions for HP1 in different cell types to maintain ER homeostasis.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Retículo Endoplásmico/metabolismo , Hormesis , Respuesta de Proteína Desplegada , Animales , Autofagia , Homólogo de la Proteína Chromobox 5 , Citoprotección , Estrés del Retículo Endoplásmico , Intestinos/citología , Mutación/genética , Neuronas/citología , Neuronas/metabolismo , Proteína de Retinoblastoma/metabolismo , Homología de Secuencia de Aminoácido , Transducción de Señal , Dedos de Zinc
7.
Mol Cell Biol ; 32(2): 251-65, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22083954

RESUMEN

Linker histone (H1) and heterochromatin protein 1 (HP1) are essential components of heterochromatin which contribute to the transcriptional repression of genes. It has been shown that the methylation mark of vertebrate histone H1 is specifically recognized by the chromodomain of HP1. However, the exact biological role of linker histone binding to HP1 has not been determined. Here, we investigate the function of the Caenorhabditis elegans H1 variant HIS-24 and the HP1-like proteins HPL-1 and HPL-2 in the cooperative transcriptional regulation of immune-relevant genes. We provide the first evidence that HPL-1 interacts with HIS-24 monomethylated at lysine 14 (HIS-24K14me1) and associates in vivo with promoters of genes involved in antimicrobial response. We also report an increase in overall cellular levels and alterations in the distribution of HIS-24K14me1 after infection with pathogenic bacteria. HIS-24K14me1 localization changes from being mostly nuclear to both nuclear and cytoplasmic in the intestinal cells of infected animals. Our results highlight an antimicrobial role of HIS-24K14me1 and suggest a functional link between epigenetic regulation by an HP1/H1 complex and the innate immune system in C. elegans.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/inmunología , Proteínas Cromosómicas no Histona/metabolismo , Regulación de la Expresión Génica , Histonas/metabolismo , Inmunidad Innata , Animales , Bacillus thuringiensis/fisiología , Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/microbiología , Proteínas de Caenorhabditis elegans/genética , Proteínas Cromosómicas no Histona/genética , Histonas/genética , Interacciones Huésped-Patógeno , Regiones Promotoras Genéticas , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Activación Transcripcional
8.
Genome Biol ; 12(12): R123, 2011 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-22185090

RESUMEN

BACKGROUND: Heterochromatin protein 1 (HP1) family proteins have a well-characterized role in heterochromatin packaging and gene regulation. Their function in organismal development, however, is less well understood. Here we used genome-wide expression profiling to assess novel functions of the Caenorhabditis elegans HP1 homolog HPL-2 at specific developmental stages. RESULTS: We show that HPL-2 regulates the expression of germline genes, extracellular matrix components and genes involved in lipid metabolism. Comparison of our expression data with HPL-2 ChIP-on-chip profiles reveals that a significant number of genes up- and down-regulated in the absence of HPL-2 are bound by HPL-2. Germline genes are specifically up-regulated in hpl-2 mutants, consistent with the function of HPL-2 as a repressor of ectopic germ cell fate. In addition, microarray results and phenotypic analysis suggest that HPL-2 regulates the dauer developmental decision, a striking example of phenotypic plasticity in which environmental conditions determine developmental fate. HPL-2 acts in dauer at least partly through modulation of daf-2/IIS and TGF-ß signaling pathways, major determinants of the dauer program. hpl-2 mutants also show increased longevity and altered lipid metabolism, hallmarks of the long-lived, stress resistant dauers. CONCLUSIONS: Our results suggest that the worm HP1 homologue HPL-2 may coordinately regulate dauer diapause, longevity and lipid metabolism, three processes dependent on developmental input and environmental conditions. Our findings are of general interest as a paradigm of how chromatin factors can both stabilize development by buffering environmental variation, and guide the organism through remodeling events that require plasticity of cell fate regulation.


Asunto(s)
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Proteínas Cromosómicas no Histona/genética , Regulación del Desarrollo de la Expresión Génica , Metabolismo de los Lípidos/genética , Longevidad/genética , Proteínas Represoras/genética , Animales , Caenorhabditis elegans/crecimiento & desarrollo , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Ambiente , Perfilación de la Expresión Génica , Células Germinativas/crecimiento & desarrollo , Células Germinativas/metabolismo , Organismos Hermafroditas , Heterocromatina/genética , Masculino , Mutación , Análisis de Secuencia por Matrices de Oligonucleótidos , Receptor de Insulina/genética , Receptor de Insulina/metabolismo , Proteínas Represoras/metabolismo , Transducción de Señal , Factor de Crecimiento Transformador beta/genética , Factor de Crecimiento Transformador beta/metabolismo
9.
Proc Natl Acad Sci U S A ; 108(20): 8305-10, 2011 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-21527717

RESUMEN

Methylation of histone H3 lysine 4 (H3K4me), a mark associated with gene activation, is mediated by SET1 and the related mixed lineage leukemia (MLL) histone methyltransferases (HMTs) across species. Mammals contain seven H3K4 HMTs, Set1A, Set1B, and MLL1-MLL5. The activity of SET1 and MLL proteins relies on protein-protein interactions within large multisubunit complexes that include three core components: RbBP5, Ash2L, and WDR5. It remains unclear how the composition and specificity of these complexes varies between cell types and during development. Caenorhabditis elegans contains one SET1 protein, SET-2, one MLL-like protein, SET-16, and single homologs of RbBP5, Ash2L, and WDR5. Here we show that SET-2 is responsible for the majority of bulk H3K4 methylation at all developmental stages. However, SET-2 and absent, small, or homeotic discs 2 (ASH-2) are differentially required for tri- and dimethylation of H3K4 (H3K4me3 and -me2) in embryos and adult germ cells. In embryos, whereas efficient H3K4me3 requires both SET-2 and ASH-2, H3K4me2 relies mostly on ASH-2. In adult germ cells by contrast, SET-2 serves a major role whereas ASH-2 is dispensable for H3K4me3 and most H3K4me2. Loss of SET-2 results in progressive sterility over several generations, suggesting an important function in the maintenance of a functional germ line. This study demonstrates that individual subunits of SET1-related complexes can show tissue specificity and developmental regulation and establishes C. elegans as a model to study SET1-related complexes in a multicellular organism.


Asunto(s)
Proteínas de Caenorhabditis elegans/fisiología , Caenorhabditis elegans/fisiología , Embrión no Mamífero/metabolismo , Células Germinativas/metabolismo , N-Metiltransferasa de Histona-Lisina/fisiología , Histonas/metabolismo , Proteínas Nucleares/fisiología , Animales , Lisina/metabolismo , Metilación , Proteínas de Saccharomyces cerevisiae/fisiología
10.
J Biol Chem ; 281(40): 30046-56, 2006 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-16882665

RESUMEN

Gephyrin is required for the formation of clusters of the glycine receptor (GlyR) in the neuronal postsynaptic membrane. It can make trimers and dimers through its N- and C-terminal G and E domains, respectively. Gephyrin oligomerization could thus create a submembrane lattice providing GlyR-binding sites. We investigated the relationships between the stability of cell surface GlyR and the ability of gephyrin splice variants to form oligomers. Using truncated and full-length gephyrins we found that the 13-amino acid sequence (cassette 5) prevents G domain trimerization. Moreover, E domain dimerization is inhibited by the gephyrin central L domain. All of the gephyrin variants bind GlyR beta subunit cytoplasmic loop with high affinity regardless of their cassette composition. Coexpression experiments in COS-7 cells demonstrated that GlyR bound to gephyrin harboring cassette 5 cannot be stabilized at the cell surface. This gephyrin variant was found to deplete synapses from both GlyR and gephyrin in transfected neurons. These data suggest that the relative expression level of cellular variants influence the overall oligomerization pattern of gephyrin and thus the turnover of synaptic GlyR.


Asunto(s)
Proteínas Portadoras/metabolismo , Proteínas de la Membrana/metabolismo , Receptores de Glicina/metabolismo , Sinapsis/metabolismo , Animales , Células COS , Proteínas Portadoras/biosíntesis , Proteínas Portadoras/química , Células Cultivadas , Chlorocebus aethiops , Proteínas de la Membrana/biosíntesis , Proteínas de la Membrana/química , Neuronas/química , Neuronas/metabolismo , Ratas , Ratas Sprague-Dawley , Receptores de Glicina/química , Sinapsis/química
11.
Dev Biol ; 297(2): 308-22, 2006 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-16890929

RESUMEN

HP1 proteins are essential components of heterochromatin and contribute to the transcriptional repression of euchromatic genes via the recruitment to specific promoters by corepressor proteins including TIF1 and Rb. The Caenorhabditis elegans HP1 homologue HPL-2 acts in the "synMuv" (synthetic multivulval) pathway, which defines redundant negative regulators of a Ras signaling cascade required for vulval induction. Several synMuv genes encode for chromatin-associated proteins involved in transcriptional regulation, including Rb and components of the Mi-2/NuRD and TIP60/NuA4 chromatin remodeling complexes. Here, we show that HPL-2 physically interacts in vitro and in vivo with the multiple zinc finger protein LIN-13, another member of the synMuv pathway. A variant of the conserved PXVXL motif found in many HP1-interacting proteins mediates LIN-13 binding to the CSD of HPL-2. We further show by in vivo localization studies that LIN-13 is required for HPL-2 recruitment in nuclear foci. Our data suggest that the LIN-13/HPL-2 complex may physically link a subset of the Rb related synMuv proteins to chromatin.


Asunto(s)
Proteínas de Caenorhabditis elegans/fisiología , Proteínas Portadoras/fisiología , Proteínas Cromosómicas no Histona/fisiología , Regulación del Desarrollo de la Expresión Génica , Vulva/embriología , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/química , Proteínas Portadoras/química , Homólogo de la Proteína Chromobox 5 , Proteínas Cromosómicas no Histona/química , Secuencia Conservada , Femenino , Modelos Genéticos , Datos de Secuencia Molecular , Unión Proteica , Homología de Secuencia de Aminoácido
12.
Dev Biol ; 298(1): 176-87, 2006 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-16905130

RESUMEN

HP1 proteins are essential components of heterochromatin and contribute to the transcriptional repression of euchromatic genes. Although most species contain more than one HP1 family member which differ in their chromosomal distribution, it is not known to what extent the activity of these different family members is redundant or specific in a developmental context. C. elegans has two HP1 homologues, HPL-1 and HPL-2. While HPL-2 functions in vulval and germline development, no function has so far been attributed to HPL-1. Here we report the characterization of an hpl-1 null allele. We show that while the absence of hpl-1 alone results in no obvious phenotype, hpl-1;hpl-2 double mutants show synthetic, temperature sensitive phenotypes including larval lethality and severe defects in the development of the somatic gonad. Furthermore, we find that hpl-1 has an unexpected role in vulval development by acting redundantly with hpl-2, but not other genes previously implicated in vulval development. Localization studies show that like HPL-2, HPL-1 is a ubiquitously expressed nuclear protein. However, HPL-1 and HPL-2 localization does not completely overlap. Our results show that HPL-1 and HPL-2 play both unique and redundant functions in post-embryonic development.


Asunto(s)
Proteínas de Caenorhabditis elegans/fisiología , Caenorhabditis elegans/crecimiento & desarrollo , Caenorhabditis elegans/fisiología , Proteínas Cromosómicas no Histona/fisiología , Alelos , Animales , Biomarcadores/análisis , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Diferenciación Celular , Homólogo de la Proteína Chromobox 5 , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Femenino , Regulación del Desarrollo de la Expresión Génica , Células Germinativas/crecimiento & desarrollo , Gónadas/crecimiento & desarrollo , Larva/crecimiento & desarrollo
13.
EMBO J ; 25(6): 1385-95, 2006 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-16511563

RESUMEN

Glycine is the major inhibitory neurotransmitter in the spinal cord and brain stem. Gephyrin is required to achieve a high concentration of glycine receptors (GlyRs) in the postsynaptic membrane, which is crucial for efficient glycinergic signal transduction. The interaction between gephyrin and the GlyR involves the E-domain of gephyrin and a cytoplasmic loop located between transmembrane segments three and four of the GlyR beta subunit. Here, we present crystal structures of the gephyrin E-domain with and without the GlyR beta-loop at 2.4 and 2.7 A resolutions, respectively. The GlyR beta-loop is bound in a symmetric 'key and lock' fashion to each E-domain monomer in a pocket adjacent to the dimer interface. Structure-guided mutagenesis followed by in vitro binding and in vivo colocalization assays demonstrate that a hydrophobic interaction formed by Phe 330 of gephyrin and Phe 398 and Ile 400 of the GlyR beta-loop is crucial for binding.


Asunto(s)
Proteínas Portadoras/química , Proteínas de la Membrana/química , Receptores de Glicina/química , Proteínas Recombinantes/química , Secuencia de Aminoácidos , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Cristalografía por Rayos X , Humanos , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Unión Proteica , Estructura Terciaria de Proteína , Receptores de Glicina/genética , Receptores de Glicina/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homología de Secuencia de Aminoácido , Transducción de Señal , Sinapsis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA