Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Cancer Lett ; 567: 216266, 2023 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-37321532

RESUMEN

Drug resistance is a major problem in cancer treatment with traditional or targeted therapeutics. Gemcitabine is approved for several human cancers and the first line treatment for locally advanced or metastatic pancreatic ductal adenocarcinoma (PDAC). However, gemcitabine resistance frequently occurs and is a major problem in successful treatments of these cancers and the mechanism of gemcitabine resistance remains largely unknown. In this study, we identified 65 genes that had reversible methylation changes in their promoters in gemcitabine resistant PDAC cells using whole genome Reduced Representation Bisulfite Sequencing analyses. One of these genes, PDGFD, was further studied in detail for its reversible epigenetic regulation in expression and shown to contribute to gemcitabine resistance in vitro and in vivo via stimulating STAT3 signaling in both autocrine and paracrine manners to upregulate RRM1 expression. Analyses of TCGA datasets showed that PDGFD positively associates with poor outcome of PDAC patients. Together, we conclude that the reversible epigenetic upregulation plays an important role in gemcitabine resistance development and targeting PDGFD signaling alleviates gemcitabine resistance for PDAC treatment.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Gemcitabina , Desoxicitidina/farmacología , Desoxicitidina/uso terapéutico , Regulación hacia Arriba , Epigénesis Genética , Resistencia a Antineoplásicos/genética , Línea Celular Tumoral , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Carcinoma Ductal Pancreático/patología , Desmetilación , Ribonucleósido Difosfato Reductasa/genética , Linfocinas/genética , Linfocinas/metabolismo , Linfocinas/uso terapéutico , Factor de Crecimiento Derivado de Plaquetas/genética , Neoplasias Pancreáticas
2.
J Med Chem ; 65(20): 13681-13691, 2022 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-36257066

RESUMEN

Fatty acid synthase (FASN), a sole cytosolic enzyme responsible for de-novo lipid synthesis, is overexpressed in cancer but not in normal non-lipogenic tissues. FASN has been targeted, albeit no such inhibitor has been approved. Proton pump inhibitors (PPIs), approved for digestive disorders, were found to inhibit FASN with anticancer activities in attempting to repurpose Food and Drug Administration-approved drugs. Indeed, PPI usage benefited breast cancer patients and increased their response rate. Due to structural similarity, we thought that their metabolites might extend anticancer effects of PPIs by inhibiting FASN. Here, we tested this hypothesis and found that 5-hydroxy lansoprazole sulfide (5HLS), the end lansoprazole metabolite, was more active than lansoprazole in inhibiting FASN function and regulation of NHEJ repair of oxidative DNA damage via PARP1. Surprisingly, 5HLS inhibits the enoyl reductase, whereas lansoprazole inhibits the thioesterase of FASN. Thus, PPI metabolites may contribute to the lasting anticancer effects of PPIs by inhibiting FASN.


Asunto(s)
Inhibidores de la Bomba de Protones , Neoplasias de la Mama Triple Negativas , Humanos , Lansoprazol/farmacología , Lansoprazol/uso terapéutico , Inhibidores de la Bomba de Protones/farmacología , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Oxidorreductasas , Ácido Graso Sintasas/metabolismo , Sulfuros/farmacología , Lípidos
3.
Front Cell Dev Biol ; 8: 753, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32974334

RESUMEN

Translation initiation in protein synthesis regulated by eukaryotic initiation factors (eIFs) is a crucial step in controlling gene expression. eIF3a has been shown to regulate protein synthesis and cellular response to treatments by anticancer agents including cisplatin by regulating nucleotide excision repair. In this study, we tested the hypothesis that eIF3a regulates the synthesis of proteins important for the repair of double-strand DNA breaks induced by ionizing radiation (IR). We found that eIF3a upregulation sensitized cellular response to IR while its downregulation caused resistance to IR. eIF3a increases IR-induced DNA damages and decreases non-homologous end joining (NHEJ) activity by suppressing the synthesis of NHEJ repair proteins. Furthermore, analysis of existing patient database shows that eIF3a expression associates with better overall survival of breast, gastric, lung, and ovarian cancer patients. These findings together suggest that eIF3a plays an important role in cellular response to DNA-damaging treatments by regulating the synthesis of DNA repair proteins and, thus, eIIF3a likely contributes to the outcome of cancer patients treated with DNA-damaging strategies including IR.

5.
J Pharmacol Exp Ther ; 371(2): 320-326, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31455631

RESUMEN

CC-115, a triazole-containing compound, is a dual mammalian target of rapamycin (mTOR)/DNA-dependent protein kinase (DNA-PK) inhibitor currently in clinical trials. To develop this compound further, we investigated factors that may affect cellular response to CC-115. Previously, fatty acid synthase (FASN) was shown to upregulate DNA-PK activity and contribute to drug resistance; therefore, we hypothesized that FASN may affect cellular response to CC-115. Instead, however, we showed that CC-115 is a substrate of ATP-binding cassette G2 (ABCG2), a member of the ATP-binding cassette transporter superfamily, and that expression of ABCG2, not FASN, affects the potency of CC-115. ABCG2 overexpression significantly increases resistance to CC-115. Inhibiting ABCG2 function, using small-molecule inhibitors, sensitizes cancer cells to CC-115. We also found that CC-115 may be a substrate of ABCB1, another known ABC protein that contributes to drug resistance. These findings suggest that expression of ABC transporters, including ABCB1 and ABCG2, may affect the outcome in clinical trials testing CC-115. Additionally, the data indicate that ABC transporters may be used as markers for future precision use of CC-115. SIGNIFICANCE STATEMENT: In this article, we report our findings on the potential mechanism of resistance to CC-115, a dual inhibitor of mTOR and DNA-PK currently in clinical trials. We show that CC-115 is a substrate of ABCG2 and can be recognized by ABCB1, which contributes to CC-115 resistance. These findings provide novel information and potential guidance on future clinical testing of CC-115.


Asunto(s)
Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/metabolismo , Resistencia a Medicamentos/efectos de los fármacos , Proteínas de Neoplasias/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Pirazinas/farmacología , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Serina-Treonina Quinasas TOR/metabolismo , Triazoles/farmacología , Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/fisiología , Ensayos Clínicos como Asunto/métodos , ADN/antagonistas & inhibidores , ADN/metabolismo , Relación Dosis-Respuesta a Droga , Resistencia a Medicamentos/fisiología , Células HEK293 , Humanos , Células MCF-7 , Factores de Riesgo , Especificidad por Sustrato/efectos de los fármacos , Especificidad por Sustrato/fisiología
6.
Pharmacol Ther ; 191: 74-91, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-29933035

RESUMEN

Signal transducer and activator of transcription 3 (STAT3) controls many biological processes including differentiation, survival, proliferation, and angiogenesis. In normal healthy cells, STAT3 is tightly regulated to maintain a momentary active state. However, aberrant or constitutively activated STAT3 has been observed in many different cancers and constitutively activated STAT3 has been shown to associate with poor prognosis and tumor progression. For this reason, STAT3 has been studied as a possible target in the treatment of many different types of cancers. However, despite decades of research, a FDA-approved STAT3 inhibitor has yet to emerge. In this review, we will analyze past studies targeting STAT3 for drug discovery, understand possible causes of failure in these studies, and provide potential insights for future efforts to overcome these roadblocks.


Asunto(s)
Antineoplásicos/farmacología , Neoplasias/tratamiento farmacológico , Factor de Transcripción STAT3/antagonistas & inhibidores , Animales , Progresión de la Enfermedad , Descubrimiento de Drogas/métodos , Humanos , Neoplasias/patología , Pronóstico , Factor de Transcripción STAT3/metabolismo
7.
Mol Cancer Res ; 15(4): 418-428, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28087741

RESUMEN

14-3-3σ has been implicated in the development of chemo and radiation resistance and in poor prognosis of multiple human cancers. While it has been postulated that 14-3-3σ contributes to these resistances via inhibiting apoptosis and arresting cells in G2-M phase of the cell cycle, the molecular basis of this regulation is currently unknown. In this study, we tested the hypothesis that 14-3-3σ causes resistance to DNA-damaging treatments by enhancing DNA repair in cells arrested in G2-M phase following DNA-damaging treatments. We showed that 14-3-3σ contributed to ionizing radiation (IR) resistance by arresting cancer cells in G2-M phase following IR and by increasing non-homologous end joining (NHEJ) repair of the IR-induced DNA double strand breaks (DSB). The increased NHEJ repair activity was due to 14-3-3σ-mediated upregulation of PARP1 expression that promoted the recruitment of DNA-PKcs to the DNA damage sites for repair of DSBs. On the other hand, the increased G2-M arrest following IR was due to 14-3-3σ-induced Chk2 expression.Implications: These findings reveal an important molecular basis of 14-3-3σ function in cancer cell resistance to chemo/radiation therapy and in poor prognosis of human cancers. Mol Cancer Res; 15(4); 418-28. ©2017 AACR.


Asunto(s)
Proteínas 14-3-3/genética , Biomarcadores de Tumor/genética , Quinasa de Punto de Control 2/genética , Resistencia a Antineoplásicos , Exorribonucleasas/genética , Neoplasias/genética , Poli(ADP-Ribosa) Polimerasa-1/genética , Tolerancia a Radiación , Proteínas 14-3-3/metabolismo , Antineoplásicos/farmacología , Biomarcadores de Tumor/metabolismo , Ciclo Celular , Línea Celular Tumoral , Quinasa de Punto de Control 2/metabolismo , Reparación del ADN por Unión de Extremidades , Exorribonucleasas/metabolismo , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Neoplasias/radioterapia , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Regulación hacia Arriba
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...