Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Microsyst Nanoeng ; 7: 21, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34567735

RESUMEN

There is a global unmet need for rapid and cost-effective prognostic and diagnostic tools that can be used at the bedside or in the doctor's office to reduce the impact of serious disease. Many cancers are diagnosed late, leading to costly treatment and reduced life expectancy. With prostate cancer, the absence of a reliable test has inhibited the adoption of screening programs. We report a microelectronic point-of-care metabolite biomarker measurement platform and use it for prostate cancer detection. The platform, using an array of photodetectors configured to operate with targeted, multiplexed, colorimetric assays confined in monolithically integrated passive microfluidic channels, completes a combined assay of 4 metabolites in a drop of human plasma in under 2 min. A preliminary clinical study using l-amino acids, glutamate, choline, and sarcosine was used to train a cross-validated random forest algorithm. The system demonstrated sensitivity to prostate cancer of 94% with a specificity of 70% and an area under the curve of 0.78. The technology can implement many similar assay panels and hence has the potential to revolutionize low-cost, rapid, point-of-care testing.

2.
IEEE Trans Biomed Eng ; 67(2): 614-623, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31226063

RESUMEN

Precision metabolomics and quantification for cost-effective rapid diagnosis of disease are the key goals in personalized medicine and point-of-care testing. At present, patients are subjected to multiple test procedures requiring large laboratory equipment. Microelectronics has already made modern computing and communications possible by integration of complex functions within a single chip. As More than Moore technology increases in importance, integrated circuits for densely patterned sensor chips have grown in significance. Here, we present a versatile single complementary metal-oxide-semiconductor chip forming a platform to address personalized needs through on-chip multimodal optical and electrochemical detection that will reduce the number of tests that patients must take. The chip integrates interleaved sensing subsystems for quadruple-mode colorimetric, chemiluminescent, surface plasmon resonance, and hydrogen ion measurements. These subsystems include a photodiode array and a single photon avalanche diode array with some elements functionalized to introduce a surface plasmon resonance mode. The chip also includes an array of ion sensitive field-effect transistors. The sensor arrays are distributed uniformly over an active area on the chip surface in a scalable and modular design. Bio-functionalization of the physical sensors yields a highly selective simultaneous multiple-assay platform in a disposable format. We demonstrate its versatile capabilities through quantified bio-assays performed on-chip for glucose, cholesterol, urea, and urate, each within their naturally occurring physiological range.


Asunto(s)
Biomarcadores/análisis , Técnicas Biosensibles/instrumentación , Nanotecnología/instrumentación , Glucemia/análisis , Técnicas de Química Analítica/instrumentación , Colesterol/sangre , Diseño de Equipo , Humanos , Semiconductores , Ácido Úrico/análisis
3.
Sensors (Basel) ; 17(7)2017 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-28671642

RESUMEN

Video capsule endoscopy (VCE) is now a clinically accepted diagnostic modality in which miniaturized technology, an on-board power supply and wireless telemetry stand as technological foundations for other capsule endoscopy (CE) devices. However, VCE does not provide therapeutic functionality, and research towards therapeutic CE (TCE) has been limited. In this paper, a route towards viable TCE is proposed, based on multiple CE devices including important acoustic sensing and drug delivery components. In this approach, an initial multimodal diagnostic device with high-frequency quantitative microultrasound that complements video imaging allows surface and subsurface visualization and computer-assisted diagnosis. Using focused ultrasound (US) to mark sites of pathology with exogenous fluorescent agents permits follow-up with another device to provide therapy. This is based on an US-mediated targeted drug delivery system with fluorescence imaging guidance. An additional device may then be utilized for treatment verification and monitoring, exploiting the minimally invasive nature of CE. While such a theranostic patient pathway for gastrointestinal treatment is presently incomplete, the description in this paper of previous research and work under way to realize further components for the proposed pathway suggests it is feasible and provides a framework around which to structure further work.


Asunto(s)
Endoscopía Capsular , Diagnóstico por Computador , Humanos , Telemetría , Nanomedicina Teranóstica , Ultrasonido
4.
Sci Rep ; 5: 18591, 2015 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-26678456

RESUMEN

Fluorescence Imaging (FI) is a powerful technique in biological science and clinical medicine. Current FI devices that are used either for in-vivo or in-vitro studies are expensive, bulky and consume substantial power, confining the technique to laboratories and hospital examination rooms. Here we present a miniaturised wireless fluorescence endoscope capsule with low power consumption that will pave the way for future FI systems and applications. With enhanced sensitivity compared to existing technology we have demonstrated that the capsule can be successfully used to image tissue autofluorescence and targeted fluorescence via fluorophore labelling of tissues. The capsule incorporates a state-of-the-art complementary metal oxide semiconductor single photon avalanche detector imaging array, miniaturised optical isolation, wireless technology and low power design. When in use the capsule consumes only 30.9 mW, and deploys very low-level 468 nm illumination. The device has the potential to replace highly power-hungry intrusive optical fibre based endoscopes and to extend the range of clinical examination below the duodenum. To demonstrate the performance of our capsule, we imaged fluorescence phantoms incorporating principal tissue fluorophores (flavins) and absorbers (haemoglobin). We also demonstrated the utility of marker identification by imaging a 20 µM fluorescein isothiocyanate (FITC) labelling solution on mammalian tissue.


Asunto(s)
Endoscopía Capsular/instrumentación , Fluoresceína-5-Isotiocianato/química , Imagen Óptica , Fotones , Tecnología Inalámbrica
5.
IEEE Trans Biomed Eng ; 60(1): 55-62, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23047860

RESUMEN

We report on the design, fabrication, testing, and packaging of a miniaturized system capable of detecting autofluorescence (AF) from mammalian intestinal tissue. The system comprises an application-specific integrated circuit (ASIC), light-emitting diode, optical filters, control unit, and radio transmitter. The ASIC contains a high-voltage charge pump and single-photon avalanche diode detector (SPAD). The charge pump biases the SPAD above its breakdown voltage to operate in Geiger mode. The SPAD offers a photon detection efficiency of 37% at 520 nm, which corresponds to the AF emission peak of the principle human intestinal fluorophore, flavin adenine dinucleotide. The ASIC was fabricated using a commercial triple-well high-voltage CMOS process. The complete device operates at 3 V and draws an average of 7.1 mA, enabling up to 23 h of continuous operation from two 165-mAh SR44 batteries.


Asunto(s)
Endoscopía Capsular/instrumentación , Imagen Óptica/métodos , Animales , Endoscopía Capsular/métodos , Diseño de Equipo , Modelos Biológicos , Fotones , Ovinos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...