Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Structure ; 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38531363

RESUMEN

GCN2 is a stress response kinase that phosphorylates the translation initiation factor eIF2α to inhibit general protein synthesis when activated by uncharged tRNA and stalled ribosomes. The presence of a HisRS-like domain in GCN2, normally associated with tRNA aminoacylation, led to the hypothesis that eIF2α kinase activity is regulated by the direct binding of this domain to uncharged tRNA. Here we solved the structure of the HisRS-like domain in the context of full-length GCN2 by cryoEM. Structure and function analysis shows the HisRS-like domain of GCN2 has lost histidine and ATP binding but retains tRNA binding abilities. Hydrogen deuterium exchange mass spectrometry, site-directed mutagenesis and computational docking experiments support a tRNA binding model that is partially shifted from that employed by bona fide HisRS enzymes. These results demonstrate that the HisRS-like domain of GCN2 is a pseudoenzyme and advance our understanding of GCN2 regulation and function.

2.
Int J Mol Sci ; 24(15)2023 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-37569817

RESUMEN

The p38 members of the mitogen-activated protein kinases (MAPKs) family mediate various cellular responses to stress conditions, inflammatory signals, and differentiation factors. They are constitutively active in chronic inflammatory diseases and some cancers. The differences between their transient effects in response to signals and the chronic effect in diseases are not known. The family is composed of four isoforms, of which p38α seems to be abnormally activated in diseases. p38α and p38ß are almost identical in sequence, structure, and biochemical and pharmacological properties, and the specific unique effects of each of them, if any, have not yet been revealed. This study aimed to reveal the specific effects induced by p38α and p38ß, both when transiently activated in response to stress and when chronically active. This was achieved via large-scale proteomics and phosphoproteomics analyses using stable isotope labeling of two experimental systems: one, mouse embryonic fibroblasts (MEFs) deficient in each of these p38 kinases and harboring either an empty vector or vectors expressing p38αWT, p38ßWT, or intrinsically active variants of these MAPKs; second, induction of transient stress by exposure of MEFs, p38α-/-, and p38ß-/- MEFs to anisomycin. Significant differences in the repertoire of the proteome and phosphoproteome between cells expressing active p38α and p38ß suggest distinct roles for each kinase. Interestingly, in both cases, the constitutive activation induced adaptations of the cells to the chronic activity so that known substrates of p38 were downregulated. Within the dramatic effect of p38s on the proteome and phosphoproteome, some interesting affected phosphorylation sites were those found in cancer-associated p53 and Hspb1 (HSP27) proteins and in cytoskeleton-associated proteins. Among these, was the stronger direct phosphorylation by p38α of p53-Ser309, which was validated on the Ser315 in human p53. In summary, this study sheds new light on the differences between chronic and transient p38α and p38ß signaling and on the specific targets of these two kinases.


Asunto(s)
Proteína Quinasa 14 Activada por Mitógenos , Proteoma , Animales , Humanos , Ratones , Proteoma/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Fibroblastos/metabolismo , Proteína Quinasa 14 Activada por Mitógenos/genética , Proteína Quinasa 14 Activada por Mitógenos/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Fosforilación , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
3.
J Biol Chem ; 299(9): 105072, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37474104

RESUMEN

Eukaryotic protein kinases (EPKs) adopt an active conformation following phosphorylation of a particular activation loop residue. Most EPKs spontaneously autophosphorylate this residue. While structure-function relationships of the active conformation are essentially understood, those of the "prone-to-autophosphorylate" conformation are unclear. Here, we propose that a site within the αC-helix of EPKs, occupied by Arg in the mitogen-activated protein kinase (MAPK) Erk1/2 (Arg84/65), impacts spontaneous autophosphorylation. MAPKs lack spontaneous autoactivation, but we found that converting Arg84/65 of Erk1/2 to various residues enables spontaneous autophosphorylation. Furthermore, Erk1 molecules mutated in Arg84 are oncogenic. Arg84/65 thus obstructs the adoption of the "prone-to-autophosphorylate" conformation. All MAPKs harbor an Arg that is equivalent to Arg84/65 of Erks, whereas Arg is rarely found at the equivalent position in other EPKs. We observed that Arg84/65 of Erk1/2 interacts with the DFG motif, suggesting that autophosphorylation may be inhibited by the Arg84/65-DFG interactions. Erk1/2s mutated in Arg84/65 autophosphorylate not only the TEY motif, known as critical for catalysis, but also on Thr207/188. Our MS/MS analysis revealed that a large proportion of the Erk2R65H population is phosphorylated on Thr188 or on Tyr185 + Thr188, and a small fraction is phosphorylated on the TEY motif. No molecules phosphorylated on Thr183 + Thr188 were detected. Thus, phosphorylation of Thr183 and Thr188 is mutually exclusive suggesting that not only TEY-phosphorylated molecules are active but perhaps also those phosphorylated on Tyr185 + Thr188. The effect of mutating Arg84/65 may mimic a physiological scenario in which allosteric effectors cause Erk1/2 activation by autophosphorylation.


Asunto(s)
Arginina , Proteína Quinasa 1 Activada por Mitógenos , Proteína Quinasa 3 Activada por Mitógenos , Fosforilación , Arginina/metabolismo , Humanos , Animales , Ratones , Línea Celular , Células HEK293 , Activación Enzimática/genética , Mutación , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Proteína Quinasa 1 Activada por Mitógenos/química , Proteína Quinasa 1 Activada por Mitógenos/genética , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/química , Proteína Quinasa 3 Activada por Mitógenos/genética , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Estructura Terciaria de Proteína , Modelos Moleculares , Cristalización , Secuencia de Aminoácidos
4.
Methods Enzymol ; 667: 729-773, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35525560

RESUMEN

Bud32 is a member of the protein kinase superfamily that is invariably conserved in all eukaryotic and archaeal organisms. In both of these kingdoms, Bud32 forms part of the KEOPS (Kinase, Endopeptidase and Other Proteins of Small size) complex together with the three other core subunits Kae1, Cgi121 and Pcc1. KEOPS functions to generate the universal and essential tRNA post-transcriptional modification N6-theronylcarbamoyl adenosine (t6A), which is present at position A37 in all tRNAs that bind to codons with an A in the first position (ANN decoding tRNAs) and is essential for the fidelity of translation. Mutations in KEOPS genes in humans underlie the severe genetic disease Galloway-Mowat syndrome, which results in childhood death. KEOPS activity depends on two major functions of Bud32. Firstly, Bud32 facilitates efficient tRNA substrate recruitment to KEOPS and helps in positioning the A37 site of the tRNA in the active site of Kae1, which carries out the t6A modification reaction. Secondly, the enzymatic activity of Bud32 is required for the ability of KEOPS to modify tRNA. Unlike conventional protein kinases, which employ their enzymatic activity for phosphorylation of protein substrates, Bud32 employs its enzymatic activity to function as an ATPase. Herein, we present a comprehensive suite of assays to monitor the activity of Bud32 in KEOPS in vitro and in vivo. We present protocols for the purification of the archaeal KEOPS proteins and of a tRNA substrate, as well as protocols for monitoring the ATPase activity of Bud32 and for analyzing its role in tRNA binding. We further present a complementary protocol for monitoring the role Bud32 has in cell growth in yeast.


Asunto(s)
Proteínas Arqueales , Proteínas de Saccharomyces cerevisiae , Adenosina Trifosfatasas/metabolismo , Proteínas Arqueales/metabolismo , Humanos , Proteínas Quinasas/metabolismo , ARN de Transferencia/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
5.
Nucleic Acids Res ; 49(19): 10818-10834, 2021 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-34614169

RESUMEN

KEOPS (Kinase, Endopeptidase and Other Proteins of Small size) is a five-subunit protein complex that is highly conserved in eukaryotes and archaea and is essential for the fitness of cells and for animal development. In humans, mutations in KEOPS genes underlie Galloway-Mowat syndrome, which manifests in severe microcephaly and renal dysfunction that lead to childhood death. The Kae1 subunit of KEOPS catalyzes the universal and essential tRNA modification N6-threonylcarbamoyl adenosine (t6A), while the auxiliary subunits Cgi121, the kinase/ATPase Bud32, Pcc1 and Gon7 play a supporting role. Kae1 orthologs are also present in bacteria and mitochondria but function in distinct complexes with proteins that are not related in structure or function to the auxiliary subunits of KEOPS. Over the past 15 years since its discovery, extensive study in the KEOPS field has provided many answers towards understanding the roles that KEOPS plays in cells and in human disease and how KEOPS carries out these functions. In this review, we provide an overview into recent advances in the study of KEOPS and illuminate exciting future directions.


Asunto(s)
Adenosina/análogos & derivados , Proteína 1 de Intercambio de Anión de Eritrocito/genética , Hernia Hiatal/genética , Microcefalia/genética , Nefrosis/genética , ARN de Transferencia/genética , Proteínas de Saccharomyces cerevisiae/genética , Adenosina/metabolismo , Animales , Proteína 1 de Intercambio de Anión de Eritrocito/química , Proteína 1 de Intercambio de Anión de Eritrocito/metabolismo , Archaea/genética , Archaea/metabolismo , Secuencia Conservada , Regulación de la Expresión Génica , Hernia Hiatal/metabolismo , Hernia Hiatal/patología , Humanos , Péptidos y Proteínas de Señalización Intracelular/química , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Microcefalia/metabolismo , Microcefalia/patología , Modelos Moleculares , Nefrosis/metabolismo , Nefrosis/patología , Proteínas Nucleares/química , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Conformación Proteica , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , ARN de Transferencia/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/química , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
6.
Structure ; 29(9): 975-988.e5, 2021 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-33989513

RESUMEN

Skp2 and cyclin A are cell-cycle regulators that control the activity of CDK2. Cyclin A acts as an activator and substrate recruitment factor of CDK2, while Skp2 mediates the ubiquitination and subsequent destruction of the CDK inhibitor protein p27. The N terminus of Skp2 can interact directly with cyclin A but is not required for p27 ubiquitination. To gain insight into this poorly understood interaction, we have solved the 3.2 Å X-ray crystal structure of the N terminus of Skp2 bound to cyclin A. The structure reveals a bipartite mode of interaction with two motifs in Skp2 recognizing two discrete surfaces on cyclin A. The uncovered binding mechanism allows for a rationalization of the inhibitory effect of Skp2 on CDK2-cyclin A kinase activity toward the RxL motif containing substrates and raises the possibility that other intermolecular regulators and substrates may use similar non-canonical modes of interaction for cyclin targeting.


Asunto(s)
Ciclina A/metabolismo , Proteínas Quinasas Asociadas a Fase-S/química , Sitios de Unión , Ciclina A/química , Humanos , Simulación del Acoplamiento Molecular , Unión Proteica , Proteínas Quinasas Asociadas a Fase-S/metabolismo
7.
Nat Commun ; 11(1): 6233, 2020 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-33277478

RESUMEN

The KEOPS complex, which is conserved across archaea and eukaryotes, is composed of four core subunits; Pcc1, Kae1, Bud32 and Cgi121. KEOPS is crucial for the fitness of all organisms examined. In humans, pathogenic mutations in KEOPS genes lead to Galloway-Mowat syndrome, an autosomal-recessive disease causing childhood lethality. Kae1 catalyzes the universal and essential tRNA modification N6-threonylcarbamoyl adenosine, but the precise roles of all other KEOPS subunits remain an enigma. Here we show using structure-guided studies that Cgi121 recruits tRNA to KEOPS by binding to its 3' CCA tail. A composite model of KEOPS bound to tRNA reveals that all KEOPS subunits form an extended tRNA-binding surface that we have validated in vitro and in vivo to mediate the interaction with the tRNA substrate and its modification. These findings provide a framework for understanding the inner workings of KEOPS and delineate why all KEOPS subunits are essential.


Asunto(s)
Proteínas Arqueales/química , Methanocaldococcus/metabolismo , Complejos Multiproteicos/química , ARN de Transferencia/química , Proteínas Arqueales/genética , Proteínas Arqueales/metabolismo , Cristalografía por Rayos X , Methanocaldococcus/genética , Modelos Moleculares , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Conformación de Ácido Nucleico , Unión Proteica , Dominios Proteicos , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , ARN de Transferencia de Lisina/química , ARN de Transferencia de Lisina/genética , ARN de Transferencia de Lisina/metabolismo
8.
Trends Biochem Sci ; 41(11): 938-953, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27594179

RESUMEN

Eukaryotic protein kinases (EPKs) control most biological processes and play central roles in many human diseases. To become catalytically active, EPKs undergo conversion from an inactive to an active conformation, an event that depends upon phosphorylation of their activation loop. Intriguingly, EPKs can use their own catalytic activity to achieve this critical phosphorylation. In other words, paradoxically, EPKs catalyze autophosphorylation when supposedly in their inactive state. This indicates the existence of another important conformation that specifically permits autophosphorylation at the activation loop, which in turn imposes adoption of the active conformation. This can be considered a prone-to-autophosphorylate conformation. Recent findings suggest that in prone-to-autophosphorylate conformations catalytic motifs are aligned allosterically, by dimerization or by regulators, and support autophosphorylation in cis or trans.


Asunto(s)
Dominios y Motivos de Interacción de Proteínas , Proteínas Quinasas/química , Proteoma/química , Regulación Alostérica , Sitio Alostérico , Secuencias de Aminoácidos , Biocatálisis , Dominio Catalítico , Expresión Génica , Humanos , Fosforilación , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Multimerización de Proteína , Proteoma/genética , Proteoma/metabolismo
9.
Mol Cell Biol ; 36(10): 1540-54, 2016 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-26976637

RESUMEN

Many enzymes are self-regulated and can either inhibit or enhance their own catalytic activity. Enzymes that do both are extremely rare. Many protein kinases autoactivate by autophosphorylating specific sites at their activation loop and are inactivated by phosphatases. Although mitogen-activated protein kinases (MAPKs) are usually activated by dual phosphorylation catalyzed by MAPK kinases (MAPKKs), the MAPK p38ß is exceptional and is capable of self-activation by cis autophosphorylation of its activation loop residue T180. We discovered that p38ß also autophosphorylates in trans two previously unknown sites residing within a MAPK-specific structural element known as the MAPK insert: T241 and S261. Whereas phosphorylation of T180 evokes catalytic activity, phosphorylation of S261 reduces the activity of T180-phosphorylated p38ß, and phosphorylation of T241 reduces its autophosphorylation in trans Both phosphorylations do not affect the activity of dually phosphorylated p38ß. T241 of p38ß is found phosphorylated in vivo in bone and muscle tissues. In myogenic cell lines, phosphorylation of p38ß residue T241 is correlated with differentiation to myotubes. T241 and S261 are also autophosphorylated in intrinsically active variants of p38α, but in this protein, they probably play a different role. We conclude that p38ß is an unusual enzyme that automodulates its basal, MAPKK-independent activity by several autophosphorylation events, which enhance and suppress its catalytic activity.


Asunto(s)
Huesos/metabolismo , Proteína Quinasa 11 Activada por Mitógenos/metabolismo , Músculos/metabolismo , Serina/metabolismo , Treonina/metabolismo , Animales , Dominio Catalítico , Diferenciación Celular , Línea Celular , Fibroblastos/citología , Fibroblastos/metabolismo , Células HEK293 , Humanos , Ratones , Proteína Quinasa 11 Activada por Mitógenos/química , Fosforilación
10.
Biosci Rep ; 36(2)2016.
Artículo en Inglés | MEDLINE | ID: mdl-26987986

RESUMEN

Many eukaryotic protein kinases (EPKs) are autoactivated through autophosphorylation of their activation loop. Mitogen-activated protein (MAP) kinases do not autophosphorylate spontaneously; relying instead upon mitogen-activated protein kinase (MAPK) kinases (MKKs) for their activation loop phosphorylation. Yet, in previous studies we identified mutations in the yeast MAPK high osmolarity glycerol (Hog1) that render it capable of spontaneous autophosphorylation and consequently intrinsically active (MKK-independent). Four of the mutations occurred in hydrophobic residues, residing in the αC-helix, which is conserved in all EPKs, and in the αL16-helix that is unique to MAPKs. These four residues interact together forming a structural element termed 'hydrophobic core'. A similar element exists in the Hog1's mammalian orthologues p38s. Here we show that the 'hydrophobic core' is a loose suppressor of Hog1's autophosphorylation. We inserted 18 point mutations into this core, 17 of which were able to render Hog1 MKK-independent. In p38s, however, only a very few mutations in the equivalent residues rendered these proteins intrinsically active. Structural analysis revealed that a salt bridge between the αC-helix and the αL16-helix that exists in p38α may not exist in Hog1. This bond further stabilizes the 'hydrophobic core' of p38, making p38 less prone to de-repressing its concealed autophosphorylation. Mutating equivalent hydrophobic residues in Jnk1 and Erk2 has no effect on their autophosphorylation. We propose that specific structural elements developed in the course of evolution to suppress spontaneous autophosphorylation of Hog1/p38. The suppressors were kept wobbly, probably to allow activation by induced autophosphorylation, but became stricter in mammalian p38s than in the yeast Hog1.


Asunto(s)
Proteína Quinasa 14 Activada por Mitógenos/química , Proteínas Quinasas Activadas por Mitógenos/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/enzimología , Proteína Quinasa 14 Activada por Mitógenos/genética , Proteína Quinasa 14 Activada por Mitógenos/metabolismo , Proteínas Quinasas Activadas por Mitógenos/genética , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Fosforilación , Estructura Secundaria de Proteína , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
11.
Mol Biol Cell ; 27(6): 1026-39, 2016 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-26658610

RESUMEN

The receptor-tyrosine kinase (RTK)/Ras/Raf pathway is an essential cascade for mediating growth factor signaling. It is abnormally overactive in almost all human cancers. The downstream targets of the pathway are members of the extracellular regulated kinases (Erk1/2) family, suggesting that this family is a mediator of the oncogenic capability of the cascade. Although all oncogenic mutations in the pathway result in strong activation of Erks, activating mutations in Erks themselves were not reported in cancers. Here we used spontaneously active Erk variants to check whether Erk's activity per se is sufficient for oncogenic transformation. We show that Erk1(R84S) is an oncoprotein, as NIH3T3 cells that express it form foci in tissue culture plates, colonies in soft agar, and tumors in nude mice. We further show that Erk1(R84S) and Erk2(R65S) are intrinsically active due to an unusual autophosphorylation activity they acquire. They autophosphorylate the activatory TEY motif and also other residues, including the critical residue Thr-207 (in Erk1)/Thr-188 (in Erk2). Strikingly, Erk2(R65S) efficiently autophosphorylates its Thr-188 even when dually mutated in the TEY motif. Thus this study shows that Erk1 can be considered a proto-oncogene and that Erk molecules possess unusual autoregulatory properties, some of them independent of TEY phosphorylation.


Asunto(s)
Transformación Celular Neoplásica/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/genética , Mutación Missense , Secuencias de Aminoácidos , Animales , Transformación Celular Neoplásica/genética , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Células HEK293 , Humanos , Sistema de Señalización de MAP Quinasas , Ratones , Ratones Desnudos , Células 3T3 NIH , Fosforilación , Proto-Oncogenes Mas , Ratas
12.
J Biol Chem ; 289(34): 23546-56, 2014 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-25006254

RESUMEN

Protein kinases are regulated by a large number of mechanisms that vary from one kinase to another. However, a fundamental activation mechanism shared by all protein kinases is phosphorylation of a conserved activation loop threonine residue. This is achieved in many cases via autophosphorylation. The mechanism and structural basis for autophosphorylation are not clear and are in fact enigmatic because this phosphorylation occurs when the kinase is in its inactive conformation. Unlike most protein kinases, MAP kinases are not commonly activated by autophosphorylation but rather by MEK-dependent phosphorylation. Here we show that p38ß, a p38 isoform that is almost identical to p38α, is exceptional and spontaneously autoactivates by autophosphorylation. We identified a 13-residue-long region composed of part of the αG-helix and the MAPK insert that triggers the intrinsic autophosphorylation activity of p38ß. When inserted into p38α, this fragment renders it spontaneously active in vitro and in mammalian cells. We further found that an interaction between the N terminus and a particular region of the C-terminal extension suppresses the intrinsic autophosphorylation of p38ß in mammalian cells. Thus, this study identified the structural motif responsible for the unique autophosphorylation capability of p38ß and the motif inhibiting this activity in living cells. It shows that the MAPK insert and C-terminal extension, structural motifs that are unique to MAPKs, play a critical role in controlling autophosphorylation.


Asunto(s)
Isoenzimas/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Secuencia de Aminoácidos , Biocatálisis , Células HEK293 , Humanos , Isoenzimas/química , Datos de Secuencia Molecular , Fosforilación , Homología de Secuencia de Aminoácido , Proteínas Quinasas p38 Activadas por Mitógenos/química
13.
Cell Rep ; 7(2): 501-513, 2014 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-24726367

RESUMEN

The kinase Mnk2 is a substrate of the MAPK pathway and phosphorylates the translation initiation factor eIF4E. In humans, MKNK2, the gene encoding for Mnk2, is alternatively spliced yielding two splicing isoforms with differing last exons: Mnk2a, which contains a MAPK-binding domain, and Mnk2b, which lacks it. We found that the Mnk2a isoform is downregulated in breast, lung, and colon tumors and is tumor suppressive. Mnk2a directly interacts with, phosphorylates, activates, and translocates p38α-MAPK into the nucleus, leading to activation of its target genes, increasing cell death and suppression of Ras-induced transformation. Alternatively, Mnk2b is pro-oncogenic and does not activate p38-MAPK, while still enhancing eIF4E phosphorylation. We further show that Mnk2a colocalization with p38α-MAPK in the nucleus is both required and sufficient for its tumor-suppressive activity. Thus, Mnk2a downregulation by alternative splicing is a tumor suppressor mechanism that is lost in some breast, lung, and colon tumors.


Asunto(s)
Empalme Alternativo , Núcleo Celular/metabolismo , Transformación Celular Neoplásica/metabolismo , Sistema de Señalización de MAP Quinasas , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Transporte Activo de Núcleo Celular , Animales , Ratones , Unión Proteica , Proteínas Serina-Treonina Quinasas/genética , Proteínas ras/metabolismo
14.
PLoS One ; 7(9): e44749, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22984552

RESUMEN

Many protein kinases require phosphorylation at their activation loop for induction of catalysis. Mitogen-activated protein kinases (MAPKs) are activated by a unique mode of phosphorylation, on neighboring Tyrosine and Threonine residues. Whereas many kinases obtain their activation via autophosphorylation, MAPKs are usually phosphorylated by specific, dedicated, MAPK kinases (MAP2Ks). Here we show however, that the yeast MAPK Hog1, known to be activated by the MAP2K Pbs2, is activated in pbs2Δ cells via an autophosphorylation activity that is induced by osmotic pressure. We mapped a novel domain at the Hog1 C-terminal region that inhibits this activity. Removal of this domain provides a Hog1 protein that is partially independent of MAP2K, namely, partially rescues osmostress sensitivity of pbs2Δ cells. We further mapped a short domain (7 amino acid residues long) that is critical for induction of autophosphorylation. Its removal abolishes autophosphorylation, but maintains Pbs2-mediated phosphorylation. This 7 amino acids stretch is conserved in the human p38α. Similar to the case of Hog1, it's removal from p38α abolishes p38α's autophosphorylation capability, but maintains, although reduces, its activation by MKK6. This study joins a few recent reports to suggest that, like many protein kinases, MAPKs are also regulated via induced autoactivation.


Asunto(s)
Regulación Enzimológica de la Expresión Génica , Proteína Quinasa 14 Activada por Mitógenos/metabolismo , Proteínas Quinasas Activadas por Mitógenos/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas Fúngicas/química , Células HEK293 , Humanos , MAP Quinasa Quinasa 6/metabolismo , Sistema de Señalización de MAP Quinasas , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Modelos Genéticos , Mutación , Presión Osmótica , Fosforilación , Plásmidos/metabolismo , Estructura Terciaria de Proteína , Proteínas de Saccharomyces cerevisiae/metabolismo
15.
Biochemistry ; 48(11): 2497-504, 2009 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-19209848

RESUMEN

A common feature of the regulation of many protein kinases is their phosphorylation on a conserved Thr residue in the activation loop. In the family of mitogen-activated protein kinases (MAPKs), another phosphorylation event, on a Tyr residue neighboring this Thr (in a TXY motif), is required for activity. Many studies suggested that this dual phosphorylation is an absolute requirement for MAPK activation, assigning an equal role for the Thr and Tyr of the phosphorylation motif. Here we tested this notion by producing p38alpha variants carrying a T180A or Y182F mutation or both and assessing their activity in vitro and in vivo. These mutations were inserted into the p38alpha(WT) molecule or into constitutively active variants of p38alpha. We found that p38alpha molecules carrying the T180A mutations lost their activity altogether. On the other hand, p38alpha(WT) and intrinsically active mutants carrying the Y182F mutation are activated by MKK6 in vitro and in vivo, although to low levels, mainly due to reduced affinity for the substrate. However, the intrinsically active variants carrying the Y182F mutation lost most of their autophosphorylation and intrinsic activities. Thus, Thr180 is essential for catalysis, whereas Tyr182 is required for autoactivation and substrate recognition. The p38alpha(Y182F) mutants are capable of activating reporter genes, suggesting that they are not only catalytically active to some degree but also capable of inducing the relevant downstream pathway. We suggest that p38s are active when only the Thr residue of the phosphorylation lip is phosphorylated, similar to many other kinases in nature.


Asunto(s)
Treonina/química , Treonina/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/química , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Activación Enzimática , Humanos , Mutación , Fosforilación , Treonina/genética , Tirosina/química , Tirosina/genética , Tirosina/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA