Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Curr Res Insect Sci ; 5: 100084, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38798278

RESUMEN

Why are some species sexually dimorphic while other closely related species are not? While all females in genus Strauzia share a multiply-banded wing pattern typical of many other true fruit flies, males of four species have noticeably elongated wings with banding patterns "coalesced" into a continuous dark streak across much of the wing. We take an integrative phylogenetic approach to explore the evolution of this dimorphism and develop general hypotheses underlying the evolution of wing dimorphism in flies. We find that the origin of coalesced and other darkened male wing patterns correlate with the inferred origin of host plant sharing in Strauzia. While wing shape among non-host-sharing species tended to be conserved across the phylogeny, shapes of male wings for Strauzia species sharing the same host plant were more different from one another than expected under Brownian models of evolution and overall rates of wing shape change differed between non-host-sharing species and host-sharing species. A survey of North American Tephritidae finds just three other genera with specialist species that share host plants. Host-sharing species in these genera also have wing patterns unusual for each genus. Only genus Eutreta is like Strauzia in having the unusual wing patterns only in males, and of genera that have multiple species sharing hosts, only in Eutreta and Strauzia do males hold territories while females search for mates. We hypothesize that in species that share host plants, those where females actively search for males in the presence of congeners may be more likely to evolve sexually dimorphic wing patterns.

2.
Proc Natl Acad Sci U S A ; 121(12): e2307780121, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38466855

RESUMEN

Coevolution is common and frequently governs host-pathogen interaction outcomes. Phenotypes underlying these interactions often manifest as the combined products of the genomes of interacting species, yet traditional quantitative trait mapping approaches ignore these intergenomic interactions. Devil facial tumor disease (DFTD), an infectious cancer afflicting Tasmanian devils (Sarcophilus harrisii), has decimated devil populations due to universal host susceptibility and a fatality rate approaching 100%. Here, we used a recently developed joint genome-wide association study (i.e., co-GWAS) approach, 15 y of mark-recapture data, and 960 genomes to identify intergenomic signatures of coevolution between devils and DFTD. Using a traditional GWA approach, we found that both devil and DFTD genomes explained a substantial proportion of variance in how quickly susceptible devils became infected, although genomic architectures differed across devils and DFTD; the devil genome had fewer loci of large effect whereas the DFTD genome had a more polygenic architecture. Using a co-GWA approach, devil-DFTD intergenomic interactions explained ~3× more variation in how quickly susceptible devils became infected than either genome alone, and the top genotype-by-genotype interactions were significantly enriched for cancer genes and signatures of selection. A devil regulatory mutation was associated with differential expression of a candidate cancer gene and showed putative allele matching effects with two DFTD coding sequence variants. Our results highlight the need to account for intergenomic interactions when investigating host-pathogen (co)evolution and emphasize the importance of such interactions when considering devil management strategies.


Asunto(s)
Enfermedades Transmisibles , Daunorrubicina/análogos & derivados , Neoplasias Faciales , Marsupiales , Animales , Neoplasias Faciales/genética , Neoplasias Faciales/veterinaria , Estudio de Asociación del Genoma Completo , Marsupiales/genética
3.
Nat Ecol Evol ; 8(2): 293-303, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38191839

RESUMEN

Top predator declines are pervasive and often have dramatic effects on ecological communities via changes in food web dynamics, but their evolutionary consequences are virtually unknown. Tasmania's top terrestrial predator, the Tasmanian devil, is declining due to a lethal transmissible cancer. Spotted-tailed quolls benefit via mesopredator release, and they alter their behaviour and resource use concomitant with devil declines and increased disease duration. Here, using a landscape community genomics framework to identify environmental drivers of population genomic structure and signatures of selection, we show that these biotic factors are consistently among the top variables explaining genomic structure of the quoll. Landscape resistance negatively correlates with devil density, suggesting that devil declines will increase quoll genetic subdivision over time, despite no change in quoll densities detected by camera trap studies. Devil density also contributes to signatures of selection in the quoll genome, including genes associated with muscle development and locomotion. Our results provide some of the first evidence of the evolutionary impacts of competition between a top predator and a mesopredator species in the context of a trophic cascade. As top predator declines are increasing globally, our framework can serve as a model for future studies of evolutionary impacts of altered ecological interactions.


Asunto(s)
Marsupiales , Animales , Marsupiales/genética , Metagenómica , Dinámica Poblacional , Cadena Alimentaria
4.
Evol Appl ; 15(2): 220-236, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35233244

RESUMEN

Understanding spatial patterns of genetic differentiation and local adaptation is critical in a period of rapid environmental change. Climate change and anthropogenic development have led to population declines and shifting geographic distributions in numerous species. The streamside salamander, Ambystoma barbouri, is an endemic amphibian with a small geographic range that predominantly inhabits small, ephemeral streams. As A. barbouri is listed as near-threatened by the IUCN, we describe range-wide patterns of genetic differentiation and adaptation to assess the species' potential to respond to environmental change. We use outlier scans and genetic-environment association analyses to identify genomic variation putatively underlying local adaptation across the species' geographic range. We find evidence for adaptation with a polygenic architecture and a set of candidate SNPs that identify genes putatively contributing to local adaptation. Our results build on earlier work that suggests that some A. barbouri populations are locally adapted despite evidence for asymmetric gene flow between the range core and periphery. Taken together, the body of work describing the evolutionary genetics of range limits in A. barbouri suggests that the species may be unlikely to respond naturally to environmental challenges through a range shift or in situ adaptation. We suggest that management efforts such as assisted migration may be necessary in future.

5.
J Evol Biol ; 34(2): 364-379, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33190382

RESUMEN

Congeneric parasites are unlikely to specialize on the same tissues of the same host species, likely because of strong multifarious selection against niche overlap. Exceptions where >1 congeneric species use the same tissues reveal important insights into ecological factors underlying the origins and maintenance of diversity. Larvae of sunflower maggot flies in the genus Strauzia feed on plants in the family Asteraceae. Although Strauzia tend to be host specialists, some species specialize on the same hosts. To resolve the origins of host sharing among these specialist flies, we used reduced representation genomic sequencing to infer the first multilocus phylogeny of genus Strauzia. Our results show that Helianthus tuberosus and Helianthus grosseserratus each host three different Strauzia species and that the flies co-occurring on a host are not one another's closest relatives. Though this pattern implies that host sharing is most likely the result of host shifts, these may not all be host shifts in the conventional sense of an insect moving onto an entirely new plant. Many hosts of Strauzia belong to a clade of perennial sunflowers that arose 1-2 MYA and are noted for frequent introgression and hybrid speciation events. Our divergence time estimates for all of the Helianthus-associated Strauzia are within this same time window (<1 MYA), suggesting that rapid and recent adaptive introgression and speciation in Helianthus may have instigated the diversification of Strauzia, with some flies converging upon a single plant host after their respective ancestral host plants hybridized to form a new sunflower species.


Asunto(s)
Especiación Genética , Helianthus , Herbivoria , Filogenia , Tephritidae/genética , Animales , Larva/fisiología
6.
BMC Ecol ; 18(1): 21, 2018 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-30001194

RESUMEN

BACKGROUND: We challenge the oft-repeated claim that the beetles (Coleoptera) are the most species-rich order of animals. Instead, we assert that another order of insects, the Hymenoptera, is more speciose, due in large part to the massively diverse but relatively poorly known parasitoid wasps. The idea that the beetles have more species than other orders is primarily based on their respective collection histories and the relative availability of taxonomic resources, which both disfavor parasitoid wasps. Though it is unreasonable to directly compare numbers of described species in each order, the ecology of parasitic wasps-specifically, their intimate interactions with their hosts-allows for estimation of relative richness. RESULTS: We present a simple logical model that shows how the specialization of many parasitic wasps on their hosts suggests few scenarios in which there would be more beetle species than parasitic wasp species. We couple this model with an accounting of what we call the "genus-specific parasitoid-host ratio" from four well-studied genera of insect hosts, a metric by which to generate extremely conservative estimates of the average number of parasitic wasp species attacking a given beetle or other insect host species. CONCLUSIONS: Synthesis of our model with data from real host systems suggests that the Hymenoptera may have 2.5-3.2× more species than the Coleoptera. While there are more described species of beetles than all other animals, the Hymenoptera are almost certainly the larger order.


Asunto(s)
Biodiversidad , Escarabajos , Interacciones Huésped-Parásitos , Himenópteros , Animales , Rasgos de la Historia de Vida , Modelos Biológicos , Filogenia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...