Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Pharmaceuticals (Basel) ; 16(6)2023 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-37375771

RESUMEN

The cardiac bioavailability of peptide drugs that inhibit harmful intracellular protein-protein interactions in cardiovascular diseases remains a challenging task in drug development. This study investigates whether a non-specific cell-targeted peptide drug is available in a timely manner at its intended biological destination, the heart, using a combined stepwise nuclear molecular imaging approach. An octapeptide (heart8P) was covalently coupled with the trans-activator of transcription (TAT) protein transduction domain residues 48-59 of human immunodeficiency virus-1 (TAT-heart8P) for efficient internalization into mammalian cells. The pharmacokinetics of TAT-heart8P were evaluated in dogs and rats. The cellular internalization of TAT-heart8P-Cy(5.5) was examined on cardiomyocytes. The real-time cardiac delivery of 68Ga-NODAGA-TAT-heart8P was tested in mice under physiological and pathological conditions. Pharmacokinetic studies of TAT-heart8P in dogs and rats revealed a fast blood clearance, high tissue distribution, and high extraction by the liver. TAT-heart-8P-Cy(5.5) was rapidly internalized in mouse and human cardiomyocytes. Correspondingly, organ uptake of hydrophilic 68Ga-NODAGA-TAT-heart8P occurred rapidly after injection with an initial cardiac bioavailability already 10 min post-injection. The saturable cardiac uptake was revailed by the pre-injection of the unlabeled compound. The cardiac uptake of 68Ga-NODAGA-TAT-heart8P did not change in a model of cell membrane toxicity. This study provides a sequential stepwise workflow to evaluate the cardiac delivery of a hydrophilic, non-specific cell-targeting peptide. 68Ga-NODAGA-TAT-heart8P showed rapid accumulation in the target tissue early after injection. The implementation of PET/CT radionuclide-based imaging methodology as a means to assess effective and temporal cardiac uptake represents a useful and critical application in drug development and pharmacological research and can be extended to the evaluation of comparable drug candidates.

2.
J Cachexia Sarcopenia Muscle ; 12(4): 933-954, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34120411

RESUMEN

BACKGROUND: Cardioprotection by preventing or repairing mitochondrial damage is an unmet therapeutic need. To understand the role of cardiomyocyte mitochondria in physiopathology, the reliable characterization of the mitochondrial morphology and compartment is pivotal. Previous studies mostly relied on two-dimensional (2D) routine transmission electron microscopy (TEM), thereby neglecting the real three-dimensional (3D) mitochondrial organization. This study aimed to determine whether classical 2D TEM analysis of the cardiomyocyte ultrastructure is sufficient to comprehensively describe the mitochondrial compartment and to reflect mitochondrial number, size, dispersion, distribution, and morphology. METHODS: Spatial distribution of the complex mitochondrial network and morphology, number, and size heterogeneity of cardiac mitochondria in isolated adult mouse cardiomyocytes and adult wild-type left ventricular tissues (C57BL/6) were assessed using a comparative 3D imaging system based on focused ion beam-scanning electron microscopy (FIB-SEM) nanotomography. For comparison of 2D vs. 3D data sets, analytical strategies and mathematical comparative approaches were performed. To confirm the value of 3D data for mitochondrial changes, we compared the obtained values for number, coverage area, size heterogeneity, and complexity of wild-type cardiomyocyte mitochondria with data sets from mice lacking the cytosolic and mitochondrial protein BNIP3 (BCL-2/adenovirus E1B 19-kDa interacting protein 3; Bnip3-/- ) using FIB-SEM. Mitochondrial respiration was assessed on isolated mitochondria using the Seahorse XF analyser. A cardiac biopsy was obtained from a male patient (48 years) suffering from myocarditis. RESULTS: The FIB-SEM nanotomographic analysis revealed that no linear relationship exists for mitochondrial number (r = 0.02; P = 0.9511), dispersion (r = -0.03; P = 0.9188), and shape (roundness: r = 0.15, P = 0.6397; elongation: r = -0.09, P = 0.7804) between 3D and 2D results. Cumulative frequency distribution analysis showed a diverse abundance of mitochondria with different sizes in 3D and 2D. Qualitatively, 2D data could not reflect mitochondrial distribution and dynamics existing in 3D tissue. 3D analyses enabled the discovery that BNIP3 deletion resulted in more smaller, less complex cardiomyocyte mitochondria (number: P < 0.01; heterogeneity: C.V. wild-type 89% vs. Bnip3-/- 68%; complexity: P < 0.001) forming large myofibril-distorting clusters, as seen in human myocarditis with disturbed mitochondrial dynamics. Bnip3-/- mice also show a higher respiration rate (P < 0.01). CONCLUSIONS: Here, we demonstrate the need of 3D analyses for the characterization of mitochondrial features in cardiac tissue samples. Hence, we observed that BNIP3 deletion physiologically acts as a molecular brake on mitochondrial number, suggesting a role in mitochondrial fusion/fission processes and thereby regulating the homeostasis of cardiac bioenergetics.


Asunto(s)
Tomografía con Microscopio Electrónico , Miocitos Cardíacos , Animales , Masculino , Ratones , Ratones Endogámicos C57BL , Mitocondrias , Dinámicas Mitocondriales , Miocitos Cardíacos/metabolismo
3.
Mucosal Immunol ; 13(4): 702-714, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32112048

RESUMEN

The urothelium of the urinary bladder represents the first line of defense. However, uropathogenic E. coli (UPEC) damage the urothelium and cause acute bacterial infection. Here, we demonstrate the crosstalk between macrophages and the urothelium stimulating macrophage migration into the urothelium. Using spatial proteomics by MALDI-MSI and LC-MS/MS, a novel algorithm revealed the spatial activation and migration of macrophages. Analysis of the spatial proteome unravelled the coexpression of Myo9b and F4/80 in the infected urothelium, indicating that macrophages have entered the urothelium upon infection. Immunofluorescence microscopy additionally indicated that intraurothelial macrophages phagocytosed UPEC and eliminated neutrophils. Further analysis of the spatial proteome by MALDI-MSI showed strong expression of IL-6 in the urothelium and local inhibition of this molecule reduced macrophage migration into the urothelium and aggravated the infection. After IL-6 inhibition, the expression of matrix metalloproteinases and chemokines, such as CX3CL1 was reduced in the urothelium. Accordingly, macrophage migration into the urothelium was diminished in the absence of CX3CL1 signaling in Cx3cr1gfp/gfp mice. Conclusively, this study describes the crosstalk between the infected urothelium and macrophages through IL-6-induced CX3CL1 expression. Such crosstalk facilitates the relocation of macrophages into the urothelium and reduces bacterial burden in the urinary bladder.


Asunto(s)
Comunicación Celular , Quimiocina CX3CL1/metabolismo , Interleucina-6/metabolismo , Macrófagos/metabolismo , Proteómica , Urotelio/inmunología , Urotelio/metabolismo , Animales , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Técnica del Anticuerpo Fluorescente , Inmunohistoquímica , Macrófagos/inmunología , Ratones , Proteómica/métodos , Vejiga Urinaria/inmunología , Vejiga Urinaria/metabolismo , Vejiga Urinaria/microbiología , Infecciones Urinarias/etiología , Infecciones Urinarias/metabolismo , Infecciones Urinarias/patología , Urotelio/microbiología
4.
J Leukoc Biol ; 103(1): 13-22, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-28882904

RESUMEN

Ly6C+ monocytes are important components of the innate immune defense against infections. These cells have been shown to proliferate in the bone marrow of mice with systemic infections. However, the proliferative capacity of Ly6C+ monocytes in infected peripheral tissues as well as the associated regulatory mechanisms remain unclear. In this study, we analyzed the proliferative capacity of Ly6C+ monocytes in the urinary bladder after infection with uropathogenic E. coli, one of the most prevalent pathogen worldwide, and in LPS-induced peritonitis. We show that Ly6C+ monocytes proliferated in the bladder after infection with uropathogenic E. coli and in the peritoneum after intraperitoneal injection of LPS. We identified IL-6, a molecule that is highly expressed in infections, as a crucial regulator of Ly6C+ monocyte proliferation. Inhibition of IL-6 via administration of antibodies against IL-6 or gp130 impeded Ly6C+ monocyte proliferation. Furthermore, repression of IL-6 trans-signaling via administration of soluble gp130 markedly reduced the proliferation of Ly6C+ monocytes. Overall, this study describes the proliferation of Ly6C+ monocytes using models of urinary tract infection and LPS-induced peritonitis. IL-6 trans-signaling was identified as the regulator of Ly6C+ monocyte proliferation.


Asunto(s)
Antígenos Ly/metabolismo , Proliferación Celular , Infecciones por Escherichia coli/microbiología , Interleucina-6/metabolismo , Monocitos/inmunología , Infecciones Urinarias/inmunología , Animales , Antígenos Ly/inmunología , Diferenciación Celular , Células Cultivadas , Escherichia coli/patogenicidad , Infecciones por Escherichia coli/complicaciones , Femenino , Interleucina-6/genética , Ratones , Ratones Endogámicos C57BL , Monocitos/metabolismo , Transducción de Señal , Infecciones Urinarias/metabolismo , Infecciones Urinarias/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...