Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
ACS Synth Biol ; 12(4): 1308-1319, 2023 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-36988263

RESUMEN

De novo peptides and proteins that switch state in response to chemical and physical cues would advance protein design and synthetic biology. Here we report two designed systems that disassemble and reassemble upon site-specific phosphorylation and dephosphorylation, respectively. As starting points, we use hyperthermostable de novo antiparallel and parallel coiled-coil heterotetramers, i.e., A2B2 systems, to afford control in downstream applications. The switches are incorporated by adding protein kinase A phosphorylation sites, R-R-X-S, with the phosphoacceptor serine residues placed to maximize disruption of the coiled-coil interfaces. The unphosphorylated peptides assemble as designed and unfold reversibly when heated. Addition of kinase to the assembled states unfolds them with half-lives of ≤5 min. Phosphorylation is reversed by Lambda Protein Phosphatase resulting in tetramer reassembly. We envisage that the new de novo designed coiled-coil components, the switches, and a mechanistic model for them will be useful in synthetic biology, biomaterials, and biotechnology applications.


Asunto(s)
Péptidos , Proteínas , Fosforilación , Estructura Secundaria de Proteína , Péptidos/metabolismo , Proteínas/metabolismo , Dominios Proteicos
2.
Biomacromolecules ; 22(5): 2010-2019, 2021 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-33881308

RESUMEN

Rational protein design requires understanding the contribution of each amino acid to a targeted protein fold. For a subset of protein structures, namely, α-helical coiled coils (CCs), knowledge is sufficiently advanced to allow the rational de novo design of many structures, including entirely new protein folds. Current CC design rules center on using aliphatic hydrophobic residues predominantly to drive the folding and assembly of amphipathic α helices. The consequences of using aromatic residues-which would be useful for introducing structural probes, and binding and catalytic functionalities-into these interfaces are not understood. There are specific examples of designed CCs containing such aromatic residues, e.g., phenylalanine-rich sequences, and the use of polar aromatic residues to make buried hydrogen-bond networks. However, it is not known generally if sequences rich in tyrosine can form CCs, or what CC assemblies these would lead to. Here, we explore tyrosine-rich sequences in a general CC-forming background and resolve new CC structures. In one of these, an antiparallel tetramer, the tyrosine residues are solvent accessible and pack at the interface between the core and the surface. In another more complex structure, the residues are buried and form an extended hydrogen-bond network.


Asunto(s)
Pliegue de Proteína , Proteínas , Secuencia de Aminoácidos , Enlace de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Estructura Secundaria de Proteína
3.
ACS Synth Biol ; 9(2): 427-436, 2020 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-31977192

RESUMEN

Protein-protein interactions control a wide variety of natural biological processes. α-Helical coiled coils frequently mediate such protein-protein interactions. Due to the relative simplicity of their sequences and structures and the ease with which properties such as strength and specificity of interaction can be controlled, coiled coils can be designed de novo to deliver a variety of non-natural protein-protein interaction domains. Herein, several de novo designed coiled coils are tested for their ability to mediate protein-protein interactions in Escherichia coli cells. The set includes a parallel homodimer, a parallel homotetramer, an antiparallel homotetramer, and a newly designed heterotetramer, all of which have been characterized in vitro by biophysical and structural methods. Using a transcription repression assay based on reconstituting the Lac repressor, we find that the modules behave as designed in the cellular environment. Each design imparts a different property to the resulting Lac repressor-coiled coil complexes, resulting in the benefit of being able to reconfigure the system in multiple ways. Modification of the system also allows the interactions to be controlled: assembly can be tuned by controlling the expression of the constituent components, and complexes can be disrupted through helix sequestration. The small and straightforward de novo designed components that we deliver are highly versatile and have considerable potential as protein-protein interaction domains in synthetic biology where proteins must be assembled in highly specific ways. The relative simplicity of the designs makes them amenable to future modifications to introduce finer control over their assembly and to adapt them for different contexts.


Asunto(s)
Proteínas/metabolismo , Secuencia de Aminoácidos , Dicroismo Circular , Escherichia coli/metabolismo , Operón Lac/genética , Plásmidos/genética , Plásmidos/metabolismo , Conformación Proteica en Hélice alfa , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Proteínas/química , Proteínas/genética , Proteína SUMO-1/química , Proteína SUMO-1/genética , Proteína SUMO-1/metabolismo , Transcripción Genética
4.
Curr Opin Biotechnol ; 58: 175-182, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31039508

RESUMEN

One approach to designing de novo proteinaceous assemblies and materials is to develop simple, standardised building blocks and then to combine these symmetrically to construct more-complex higher-order structures. This has been done extensively using ß-structured peptides to produce peptide fibres and hydrogels. Here, we focus on building with de novo α-helical peptides. Because of their self-contained, well-defined structures and clear sequence-to-structure relationships, α helices are highly programmable making them robust building blocks for biomolecular construction. The progress made with this approach over the past two decades is astonishing and has led to a variety of de novo assemblies, including discrete nanoscale objects, and fibrous, nanotube, sheet and colloidal materials. This body of work provides an exceptionally strong foundation for advancing the field beyond in vitro design and into in vivo applications including what we call protein design in cells.


Asunto(s)
Péptidos/química , Conformación Proteica en Hélice alfa
5.
J Am Chem Soc ; 141(22): 8787-8797, 2019 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-31066556

RESUMEN

The association of amphipathic α helices in water leads to α-helical-bundle protein structures. However, the driving force for this-the hydrophobic effect-is not specific and does not define the number or the orientation of helices in the associated state. Rather, this is achieved through deeper sequence-to-structure relationships, which are increasingly being discerned. For example, for one structurally extreme but nevertheless ubiquitous class of bundle-the α-helical coiled coils-relationships have been established that discriminate between all-parallel dimers, trimers, and tetramers. Association states above this are known, as are antiparallel and mixed arrangements of the helices. However, these alternative states are less well understood. Here, we describe a synthetic-peptide system that switches between parallel hexamers and various up-down-up-down tetramers in response to single-amino-acid changes and solution conditions. The main accessible states of each peptide variant are characterized fully in solution and, in most cases, to high resolution with X-ray crystal structures. Analysis and inspection of these structures helps rationalize the different states formed. This navigation of the structural landscape of α-helical coiled coils above the dimers and trimers that dominate in nature has allowed us to design rationally a well-defined and hyperstable antiparallel coiled-coil tetramer (apCC-Tet). This robust de novo protein provides another scaffold for further structural and functional designs in protein engineering and synthetic biology.


Asunto(s)
Proteínas/química , Secuencia de Aminoácidos , Interacciones Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Conformación Proteica en Hélice alfa , Pliegue de Proteína , Agua/química
7.
Phys Chem Chem Phys ; 21(1): 137-147, 2018 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-30515500

RESUMEN

Understanding the assembly and dynamics of protein-based supramolecular capsids and cages is of fundamental importance and could lead to applications in synthetic biology and biotechnology. Here we present long and large atomistic molecular dynamics simulations of de novo designed self-assembling protein nanocages (SAGEs) in aqueous media. Microsecond simulations, comprised of ≈42 million atoms for three pre-formed SAGEs of different charges, in the presence of solutes and solvent have been completed. Here, the dynamics, stability and porosity of the peptide networks are explored along with their interactions with ions, small molecules and macromolecular solutes. All assemblies are stable over the µs timescale, and the solutes show a mixture of transport behaviour across or adherence to the fabric of the SAGE particles. Solute proteins largely retained native-like conformation on contact with SAGE. Certain residues of the SAGE peptides are identified as "repeat offenders" for contacting many different solutes, which suggest modifications to reduce non-specific binding. These studies highlight how molecular dynamics can aid the design process of SAGE and similar assemblies for potential applications as diverse as platforms for drug and vaccine delivery and nanoreactors to encapsulate enzyme pathways.

8.
Nano Lett ; 18(9): 5933-5937, 2018 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-30084257

RESUMEN

Nanoparticles can be used to transport a variety of biological cargoes into eukaryotic cells. Polypeptides provide a versatile material for constructing such systems. Previously, we have assembled nanoscale peptide cages (SAGEs) from de novo designed coiled-coil modules. Here, we show that the modules can be extended with short charged peptides to alter endocytosis of the assembled SAGE particles by cultured human cells in a tunable fashion. First, we find that the peptide extensions affect coiled-coil stability predictably: N-terminal polylysine and C-terminal polyglutamate tags are destabilizing; whereas, the reversed arrangements have little impact. Second, the cationic assembled particles are internalized faster and to greater extents by cells than the parent SAGEs. By contrast, anionic decorations markedly inhibit both aspects of uptake. These studies highlight how the modular SAGE system facilitates rational peptide design to fine-tune the bioactivity of nanoparticles, which should allow engineering of tailored cell-delivery vehicles.


Asunto(s)
Portadores de Fármacos/metabolismo , Nanopartículas/metabolismo , Nanosferas/metabolismo , Péptidos/metabolismo , Animales , Portadores de Fármacos/química , Células HeLa , Humanos , Modelos Moleculares , Nanopartículas/química , Nanosferas/química , Péptidos/química , Estructura Secundaria de Proteína
9.
ACS Nano ; 12(2): 1420-1432, 2018 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-29275624

RESUMEN

Understanding how molecules in self-assembled soft-matter nanostructures are organized is essential for improving the design of next-generation nanomaterials. Imaging these assemblies can be challenging and usually requires processing, e.g., staining or embedding, which can damage or obscure features. An alternative is to use bioinspired mineralization, mimicking how certain organisms use biomolecules to template mineral formation. Previously, we have reported the design and characterization of Self-Assembled peptide caGEs (SAGEs) formed from de novo peptide building blocks. In SAGEs, two complementary, 3-fold symmetric, peptide hubs combine to form a hexagonal lattice, which curves and closes to form SAGE nanoparticles. As hexagons alone cannot tile onto spheres, the network must also incorporate nonhexagonal shapes. While the hexagonal ultrastructure of the SAGEs has been imaged, these defects have not been observed. Here, we show that positively charged SAGEs biotemplate a thin, protective silica coating. Electron microscopy shows that these SiO2-SAGEs do not collapse, but maintain their 3D shape when dried. Atomic force microscopy reveals a network of hexagonal and irregular features on the SiO2-SAGE surface. The dimensions of these (7.2 nm ± 1.4 nm across, internal angles 119.8° ± 26.1°) are in accord with the designed SAGE network and with coarse-grained modeling of the SAGE assembly. The SiO2-SAGEs are permeable to small molecules (<2 nm), but not to larger biomolecules (>6 nm). Thus, bioinspired silicification offers a mild technique that preserves soft-matter nanoparticles for imaging, revealing structural details <10 nm in size, while also maintaining desirable properties, such as permeability to small molecules.


Asunto(s)
Péptidos/síntesis química , Dióxido de Silicio/química , Tamaño de la Partícula , Péptidos/química , Propiedades de Superficie
10.
ACS Nano ; 11(8): 7901-7914, 2017 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-28686416

RESUMEN

An ability to organize and encapsulate multiple active proteins into defined objects and spaces at the nanoscale has potential applications in biotechnology, nanotechnology, and synthetic biology. Previously, we have described the design, assembly, and characterization of peptide-based self-assembled cages (SAGEs). These ≈100 nm particles comprise thousands of copies of de novo designed peptide-based hubs that array into a hexagonal network and close to give caged structures. Here, we show that, when fused to the designed peptides, various natural proteins can be co-assembled into SAGE particles. We call these constructs pSAGE for protein-SAGE. These particles tolerate the incorporation of multiple copies of folded proteins fused to either the N or the C termini of the hubs, which modeling indicates form the external and internal surfaces of the particles, respectively. Up to 15% of the hubs can be functionalized without compromising the integrity of the pSAGEs. This corresponds to hundreds of copies giving mM local concentrations of protein in the particles. Moreover, and illustrating the modularity of the SAGE system, we show that multiple different proteins can be assembled simultaneously into the same particle. As the peptide-protein fusions are made via recombinant expression of synthetic genes, we envisage that pSAGE systems could be developed modularly to actively encapsulate or to present a wide variety of functional proteins, allowing them to be developed as nanoreactors through the immobilization of enzyme cascades or as vehicles for presenting whole antigenic proteins as synthetic vaccine platforms.


Asunto(s)
Péptidos/química , Proteínas/química , Biología Sintética/métodos , Biotecnología , Nanotecnología/métodos , Pliegue de Proteína
11.
Biochim Biophys Acta ; 1857(5): 493-502, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26556173

RESUMEN

Central to the design of an efficient de novo enzyme is a robust yet mutable protein scaffold. The maquette approach to protein design offers precisely this, employing simple four-α-helix bundle scaffolds devoid of evolutionary complexity and with proven tolerance towards iterative protein engineering. We recently described the design of C2, a de novo designed c-type cytochrome maquette that undergoes post-translational modification in E. coli to covalently graft heme onto the protein backbone in vivo. This de novo cytochrome is capable of reversible oxygen binding, an obligate step in the catalytic cycle of many oxygen-activating oxidoreductases. Here we demonstrate the flexibility of both the maquette platform and the post-translational machinery of E. coli by creating a suite of functional de novo designed c-type cytochromes. We explore the engineering tolerances of the maquette by selecting alternative binding sites for heme C attachment and creating di-heme maquettes either by appending an additional heme C binding motif to the maquette scaffold or by binding heme B through simple bis-histidine ligation to a second binding site. The new designs retain the essential properties of the parent design but with significant improvements in structural stability. Molecular dynamics simulations aid the rationalization of these functional improvements while providing insight into the rules for engineering heme C binding sites in future iterations. This versatile, functional suite of de novo c-type cytochromes shows significant promise in providing robust platforms for the future engineering of de novo oxygen-activating oxidoreductases. This article is part of a Special Issue entitled Biodesign for Bioenergetics--the design and engineering of electron transfer cofactors, proteins and protein networks, edited by Ronald L. Koder and J.L. Ross Anderson.


Asunto(s)
Grupo Citocromo c/química , Oxidorreductasas/química , Ingeniería de Proteínas/métodos , Secuencia de Aminoácidos , Sitios de Unión , Grupo Citocromo c/genética , Grupo Citocromo c/metabolismo , Escherichia coli , Hemo/análogos & derivados , Hemo/química , Hemo/metabolismo , Humanos , Modelos Moleculares , Simulación de Dinámica Molecular , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Oxidorreductasas/genética , Oxidorreductasas/metabolismo , Estructura Secundaria de Proteína , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Homología de Secuencia de Aminoácido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...