Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Cereb Blood Flow Metab ; 43(9): 1601-1611, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37113060

RESUMEN

Identification of reliable and accessible biomarkers to characterize ischemic stroke patients' prognosis remains a clinical challenge. Neurofilament light chain (NfL) and glial fibrillary acidic protein (GFAP) are markers of brain injury, detectable in blood by high-sensitive technologies. Our aim was to measure serum NfL and GFAP after stroke, and to evaluate their correlation with functional outcome and the scores in rehabilitation scales at 3-month follow-up. Stroke patients were prospectively enrolled in a longitudinal observational study within 24 hours from symptom onset (D1) and monitored after 7 (D7), 30 ± 3 (M1) and 90 ± 5 (M3) days. At each time-point serum NfL and GFAP levels were measured by Single Molecule Array and correlated with National Institute of Health Stroke Scale (NIHSS), modified Rankin scale (mRS), Trunk Control Test (TCT), Functional Ambulation Classification (FAC) and Functional Independence Measure (FIM) scores. Serum NfL and GFAP showed different temporal profiles: NfL increased after stroke with a peak value at D7; GFAP showed an earlier peak at D1. NfL and GFAP concentrations correlated with clinical/rehabilitation outcomes both longitudinally and prospectively. Multivariate analysis revealed that NfL-D7 and GFAP-D1 were independent predictors of 3-month NIHSS, TCT, FAC and FIM scores, with NfL being the biomarker with the best predictive performance.


Asunto(s)
Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Humanos , Proteína Ácida Fibrilar de la Glía , Filamentos Intermedios , Biomarcadores
4.
Restor Neurol Neurosci ; 39(5): 339-366, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34657853

RESUMEN

BACKGROUND: Traumatic spinal cord injury (SCI) is a complex medical condition causing significant physical disability and psychological distress. While the adult spinal cord is characterized by poor regenerative potential, some recovery of neurological function is still possible through activation of neural plasticity mechanisms. We still have limited knowledge about the activation of these mechanisms in the different stages after human SCI. OBJECTIVE: In this review, we discuss the potential role of biomarkers of SCI as indicators of the plasticity mechanisms at work during the different phases of SCI. METHODS: An extensive review of literature related to SCI pathophysiology, neural plasticity and humoral biomarkers was conducted by consulting the PubMed database. Research and review articles from SCI animal models and SCI clinical trials published in English until January 2021 were reviewed. The selection of candidates for humoral biomarkers of plasticity after SCI was based on the following criteria: 1) strong evidence supporting involvement in neural plasticity (mandatory); 2) evidence supporting altered expression after SCI (optional). RESULTS: Based on selected findings, we identified two main groups of potential humoral biomarkers of neural plasticity after SCI: 1) neurotrophic factors including: Brain derived neurotrophic factor (BDNF), Nerve growth factor (NGF), Neurotrofin-3 (NT-3), and Insulin-like growth factor 1 (IGF-1); 2) other factors including: Tumor necrosis factor-alpha (TNF-α), Matrix Metalloproteinases (MMPs), and MicroRNAs (miRNAs). Plasticity changes associated with these biomarkers often can be both adaptive (promoting functional improvement) and maladaptive. This dual role seems to be influenced by their concentrations and time-window during SCI. CONCLUSIONS: Further studies of dynamics of biomarkers across the stages of SCI are necessary to elucidate the way in which they reflect the remodeling of neural pathways. A better knowledge about the mechanisms underlying plasticity could guide the selection of more appropriate therapeutic strategies to enhance positive spinal network reorganization.


Asunto(s)
MicroARNs , Traumatismos de la Médula Espinal , Animales , Biomarcadores , MicroARNs/metabolismo , Plasticidad Neuronal/fisiología , Recuperación de la Función/fisiología , Médula Espinal/patología , Traumatismos de la Médula Espinal/patología
5.
Neuroscience ; 424: 205-210, 2020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-31901258

RESUMEN

Retinitis Pigmentosa (RP) is a class of inherited disorders caused by the progressive death of photoreceptors in the retina. RP is still orphan of an effective treatment, with increasing optimism deriving from research aimed at arresting neurodegeneration or replacing light-responsive elements. All these therapeutic strategies rely on the functional integrity of the visual system downstream of photoreceptors. Whereas the inner retinal structure and optic radiation are known to be considerably preserved at least in early stages of RP, very little is known about the visual cortex. Remarkably, it remains completely unclear whether visual cortex plasticity is still present in RP. Using a well-established murine model of RP, the rd10 mouse, we report that visual cortical circuits retain high levels of plasticity, preserving their capability of input-dependent remodelling even at a late stage of retinal degeneration.


Asunto(s)
Plasticidad Neuronal/fisiología , Retinitis Pigmentosa/fisiopatología , Corteza Visual/fisiología , Animales , Electrorretinografía/métodos , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Retina/fisiopatología , Retinitis Pigmentosa/genética
6.
Sci Rep ; 8(1): 1187, 2018 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-29352131

RESUMEN

The influence of exposure to impoverished environments on brain development is unexplored since most studies investigated how environmental impoverishment affects adult brain. To shed light on the impact of early impoverishment on developmental trajectories of the nervous system, we developed a protocol of environmental impoverishment in which dams and pups lived from birth in a condition of reduced sensory-motor stimulation. Focusing on visual system, we measured two indexes of functional development, that is visual acuity, assessed by using Visual Evoked Potentials (VEPs), and VEP latency. In addition, we assessed in the visual cortex levels of Insulin-Like Growth Factor 1 (IGF-1) and myelin maturation, together with the expression of the GABA biosynthetic enzyme GAD67. We found that early impoverishment strongly delays visual acuity and VEP latency development. These functional changes were accompanied by a significant reduction of IGF-1 protein and GAD67 expression, as well as by delayed myelination of nerve fibers, in the visual cortex of impoverished pups. Thus, exposure to impoverished living conditions causes a significant alteration of developmental trajectories leading to a prominent delay of brain maturation. These results underscore the significance of adequate levels of environmental stimulation for the maturation of central nervous system.


Asunto(s)
Corteza Cerebral/fisiología , Relaciones Materno-Fetales , Neurogénesis , Animales , Axones/metabolismo , Biomarcadores , Peso Corporal , Corteza Cerebral/crecimiento & desarrollo , Corteza Cerebral/metabolismo , Potenciales Evocados Visuales , Femenino , Factor I del Crecimiento Similar a la Insulina/metabolismo , Masculino , Memoria , Actividad Motora , Vaina de Mielina/metabolismo , Neuronas/metabolismo , Fosforilación , Ratas , Agudeza Visual , Corteza Visual
7.
Exp Neurol ; 283(Pt A): 49-56, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27288239

RESUMEN

Down syndrome (DS) is the most diffused genetic cause of intellectual disability and, after the age of forty, is invariantly associated with Alzheimer's disease (AD). In the last years, the prolongation of life expectancy in people with DS renders the need for intervention paradigms aimed at improving mental disability and counteracting AD pathology particularly urgent. At present, however, there are no effective therapeutic strategies for DS and concomitant AD in mid-life people. The most intensively studied mouse model of DS is the Ts65Dn line, which summarizes the main hallmarks of the DS phenotype, included severe learning and memory deficits and age-dependent AD-like pathology. Here we report for the first time that middle-age Ts65Dn mice display a marked increase in soluble Aß oligomer levels in their hippocampus. Moreover, we found that long-term exposure to environmental enrichment (EE), a widely used paradigm that increases sensory-motor stimulation, reduces Aß oligomers and rescues spatial memory abilities in trisomic mice. Our findings underscore the potential of EE procedures as a non-invasive paradigm for counteracting brain aging processes in DS subjects.


Asunto(s)
Péptidos beta-Amiloides/química , Trastornos del Conocimiento/etiología , Trastornos del Conocimiento/terapia , Síndrome de Down/complicaciones , Ambiente , Morfolinos/uso terapéutico , Envejecimiento , Péptidos beta-Amiloides/inmunología , Péptidos beta-Amiloides/metabolismo , Animales , Anticuerpos/farmacología , Anticuerpos/uso terapéutico , Modelos Animales de Enfermedad , Humanos , Aprendizaje por Laberinto/efectos de los fármacos , Aprendizaje por Laberinto/fisiología , Trastornos de la Memoria/etiología , Trastornos de la Memoria/terapia , Ratones , Ratones Transgénicos , Neprilisina/inmunología , Estadísticas no Paramétricas , Natación/psicología , Factores de Tiempo
8.
Neurobiol Dis ; 82: 409-419, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26244989

RESUMEN

Down syndrome (DS), the most common genetic disorder associated with intellectual disabilities, is an untreatable condition characterized by a number of developmental defects and permanent deficits in the adulthood. Ts65Dn mice, the major animal model for DS, display severe cognitive and synaptic plasticity defects closely resembling the human phenotype. Here, we employed a multidisciplinary approach to investigate, for the first time in developing Ts65Dn mice, the effects elicited by early environmental enrichment (EE) on brain maturation and function. We report that exposure to EE resulted in a robust increase in maternal care levels displayed by Ts65Dn mothers and led to a normalization of declarative memory abilities and hippocampal plasticity in trisomic offspring. The positive effects of EE on Ts65Dn phenotype were not limited to the cognitive domain, but also included a rescue of visual system maturation. The beneficial EE effects were accompanied by increased BDNF and correction of over-expression of the GABA vesicular transporter vGAT. These findings highlight the beneficial impact of early environmental stimuli and their potential for application in the treatment of major functional deficits in children with DS.


Asunto(s)
Síndrome de Down/fisiopatología , Síndrome de Down/terapia , Hipocampo/fisiopatología , Vías Visuales/fisiopatología , Animales , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Modelos Animales de Enfermedad , Síndrome de Down/psicología , Ambiente , Potenciales Evocados Visuales , Femenino , Hipocampo/crecimiento & desarrollo , Potenciación a Largo Plazo/fisiología , Masculino , Conducta Materna , Ratones Endogámicos C57BL , Ratones Transgénicos , Reconocimiento en Psicología/fisiología , Técnicas de Cultivo de Tejidos , Proteínas del Transporte Vesicular de Aminoácidos Inhibidores/metabolismo , Agudeza Visual , Vías Visuales/crecimiento & desarrollo , Ácido gamma-Aminobutírico/metabolismo
9.
Neurobiol Dis ; 63: 12-9, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24269730

RESUMEN

Down syndrome (DS) is the most common genetic disorder associated with mental retardation. It has been repeatedly shown that Ts65Dn mice, the major animal model for DS, have severe cognitive and synaptic plasticity dysfunctions caused by excessive inhibition in their temporal lobe structures. Here we employed a multidisciplinary approach spanning from the behavioral to the electrophysiological and molecular level to investigate the effects elicited by fluoxetine on cognitive abilities, hippocampal synaptic plasticity and GABA release in adult Ts65Dn mice. We report that a chronic treatment with fluoxetine administered in the drinking water normalizes GABA release and promotes recovery of spatial memory abilities, spatial working memory for alternation, and hippocampal synaptic plasticity in adult Ts65Dn mice. Our findings might encourage new experimental attempts aimed at investigating the potential of fluoxetine for application in the treatment of major functional deficits in adult people with DS.


Asunto(s)
Antidepresivos de Segunda Generación/uso terapéutico , Síndrome de Down/patología , Fluoxetina/uso terapéutico , Hipocampo/patología , Trastornos de la Memoria/tratamiento farmacológico , Plasticidad Neuronal/efectos de los fármacos , Percepción Espacial/efectos de los fármacos , Ácido gamma-Aminobutírico/metabolismo , Análisis de Varianza , Animales , Antidepresivos de Segunda Generación/farmacología , Biofisica , Modelos Animales de Enfermedad , Síndrome de Down/complicaciones , Síndrome de Down/genética , Estimulación Eléctrica , Fluoxetina/farmacología , Hipocampo/efectos de los fármacos , Técnicas In Vitro , Aprendizaje por Laberinto/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Reconocimiento en Psicología/efectos de los fármacos , Sinaptosomas/efectos de los fármacos , Sinaptosomas/metabolismo
10.
Sci Rep ; 3: 2217, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23860568

RESUMEN

Spinal cord injury (SCI) is a severe condition leading to enduring motor deficits. When lesions are incomplete, promoting spinal cord plasticity might be a useful strategy to elicit functional recovery. Here we investigated whether long-term fluoxetine administration in the drinking water, a treatment recently demonstrated to optimize brain plasticity in several pathological conditions, promotes motor recovery in rats that received a C4 dorsal funiculus crush. We show that fluoxetine administration markedly improved motor functions compared to controls in several behavioral paradigms. The improved functional effects correlated positively with significant sprouting of intact corticospinal fibers and a modulation of the excitation/inhibition balance. Our results suggest a potential application of fluoxetine treatment as a non invasive therapeutic strategy for SCI-associated neuropathologies.


Asunto(s)
Fluoxetina/farmacología , Recuperación de la Función/efectos de los fármacos , Inhibidores Selectivos de la Recaptación de Serotonina/farmacología , Traumatismos de la Médula Espinal/rehabilitación , Traumatismos de la Médula Espinal/terapia , Animales , Modelos Animales de Enfermedad , Fluoxetina/administración & dosificación , Marcha/efectos de los fármacos , Masculino , Actividad Motora/efectos de los fármacos , Corteza Motora/efectos de los fármacos , Plasticidad Neuronal/efectos de los fármacos , Desempeño Psicomotor/efectos de los fármacos , Ratas , Inhibidores Selectivos de la Recaptación de Serotonina/administración & dosificación , Médula Espinal/efectos de los fármacos , Médula Espinal/patología , Médula Espinal/fisiopatología , Factores de Tiempo
11.
Front Cell Neurosci ; 5: 29, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22207837

RESUMEN

Down syndrome (DS) is the most common genetic disorder associated with mental retardation. It has been repeatedly shown that Ts65Dn mice, the prime animal model for DS, have severe cognitive and neural plasticity defects due to excessive inhibition. We report that increasing sensory-motor stimulation in adulthood through environmental enrichment (EE) reduces brain inhibition levels and promotes recovery of spatial memory abilities, hippocampal synaptic plasticity, and visual functions in adult Ts65Dn mice.

12.
Neural Plast ; 2011: 286073, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21766040

RESUMEN

One major goal in Neuroscience is the development of strategies promoting neural plasticity in the adult central nervous system, when functional recovery from brain disease and injury is limited. New evidence has underscored a pivotal role for cortical inhibitory circuitries in regulating plasticity both during development and in adulthood. This paper summarizes recent findings showing that the inhibition-excitation balance controls adult brain plasticity and is at the core of the pathogenesis of neurodevelopmental disorders like autism, Down syndrome, and Rett syndrome.


Asunto(s)
Encéfalo/fisiología , Inhibición Neural/fisiología , Plasticidad Neuronal/fisiología , Neuronas/fisiología , Ácido gamma-Aminobutírico/fisiología , Trastorno Autístico/fisiopatología , Síndrome de Down/fisiopatología , Humanos , Síndrome de Rett/fisiopatología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA