Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Pharmacol Rep ; 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38789891

RESUMEN

BACKGROUND: Elevated brain levels of kynurenic acid (KYNA), a metabolite in the kynurenine pathway, are associated with cognitive dysfunctions, which are nowadays often considered as fundamental characteristics of several psychopathologies; however, the role of KYNA in mental illnesses, such as schizophrenia, is not fully elucidated. This study aimed to assess KYNA levels in the prefrontal cortex (PFC) of rats prenatally treated with methylazoxymethanol (MAM) acetate, i.e., a well-validated neurodevelopmental animal model of schizophrenia. The effects of an early pharmacological modulation of the endogenous cannabinoid system were also evaluated. METHODS: Pregnant Sprague-Dawley rats were treated with MAM (22 mg/kg, ip) or its vehicle at gestational day 17. Male offspring were treated with the cannabinoid CB1 receptor antagonist/inverse agonist AM251 (0.5 mg/kg/day, ip) or with the typical antipsychotic haloperidol (0.6 mg/kg/day, ip) from postnatal day (PND) 19 to PND39. The locomotor activity and cognitive performance were assessed in the novel object recognition test and the open field test in adulthood. KYNA levels in the PFC of prenatally MAM-treated rats were also assessed. RESULTS: A significant cognitive impairment was observed in prenatally MAM-treated rats (p < 0.01), which was associated with enhanced PFC KYNA levels (p < 0.05). The peripubertal AM251, but not haloperidol, treatment ameliorated the cognitive deficit (p < 0.05), by normalizing the PFC KYNA content in MAM rats. CONCLUSIONS: The present findings suggest that the cognitive deficit observed in MAM rats may be related to enhanced PFC KYNA levels which could be, in turn, mediated by the activation of cannabinoid CB1 receptor. These results further support the modulation of brain KYNA levels as a potential therapeutic strategy to ameliorate the cognitive dysfunctions in schizophrenia.

2.
Chem Biol Interact ; 388: 110839, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38142921

RESUMEN

Paraoxonase (PON) enzymes (PON1, PON2 and PON3) exert antioxidant properties through arylesterase, lactonase and paraoxonase activities. Increasing findings suggested their potential involvement, particularly PON1 and PON2, in Alzheimer's disease (AD), a neurodegenerative pathology characterized by early oxidative stress. Specifically, decreased serum PON1-arylesterase and lactonase activities seem to be associated with an increased brain oxidative damage in early AD, leading to hypothesize that PON activity alterations might be an early event in AD. To address this hypothesis, the levels of 4-hydroxynonenal (4-HNE; i.e. a marker of oxidative stress damage) along with the protein expression and enzymatic activity of PON1 and PON2 have been investigated in the brain and serum of young [Postnatal day (PD)8-10, 20-25 and 60-65] asymptomatic 3xTg-AD female mice, one of the most used transgenic models of AD. At PD 8-10, there were no differences in hippocampus and prefrontal cortex (PFC) 4-HNE expression levels between 3xTg-AD mice compared to controls (Non-Tg mice). On the other hand, significant increased levels of 4-HNE were detected in PD 20-30 3xTg-AD mice hippocampus, while a significant reduction was observed in 3xTg-AD group at PD 60-65. In the PFC, 4-HNE levels were significantly reduced in 3xTg-AD mice brain at PD 20-30, while no differences in 4-HNE levels were detected at PD 60-65. No significant differences in arylesterase and lactonase activities were observed in the plasma of 3xTg-AD and Non-Tg mice at the different considered ages. Compared to Non-Tg mice, a reduction of brain arylesterase activity was found in 3xTg-AD female at PD 20-30 and PD 60-65, but it was significant only in the younger group. Finally, a similar trend was observed also for PON1 and PON2 protein levels, with both significantly, and solely, decreased in 3xTg-AD mice brain at PD 20-30. Overall, these findings suggest that the altered oxidative stress homeostasis in the 3xTg-AD female mice may be related to an early reduction in activity and expression of PONs enzymes most likely via a reduced brain arylesterases activity.


Asunto(s)
Enfermedad de Alzheimer , Arildialquilfosfatasa , Hidrolasas de Éster Carboxílico , Femenino , Ratones , Animales , Arildialquilfosfatasa/metabolismo , Enfermedad de Alzheimer/patología , Oxidación-Reducción , Estrés Oxidativo , Ratones Transgénicos
3.
Expert Opin Drug Deliv ; 20(11): 1657-1679, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38014509

RESUMEN

OBJECTIVE: Ferulic acid (Fer) displays antioxidant/anti-inflammatory properties useful against neurodegenerative diseases. To increase Fer uptake and its central nervous system residence time, a dimeric prodrug, optimizing the Fer loading on nasally administrable solid lipid microparticles (SLMs), was developed. METHODS: The prodrug was synthesized as Fer dimeric conjugate methylated on the carboxylic moiety. Prodrug antioxidant/anti-inflammatory properties and ability to release Fer in physiologic environments were evaluated. Tristearin or stearic acid SLMs were obtained by hot emulsion technique. In vivo pharmacokinetics were quantified by HPLC. RESULTS: The prodrug was able to release Fer in physiologic environments (whole blood and brain homogenates) and induce in vitro antioxidant/anti-inflammatory effects. Its half-life in rats was 18.0 ± 1.9 min. Stearic acid SLMs, exhibiting the highest prodrug loading and dissolution rate, were selected for nasal administration to rats (1 mg/kg dose), allowing to obtain high prodrug bioavailability and prolonged residence in the cerebrospinal fluid, showing AUC (Area Under Concentration) values (108.5 ± 3.9 µg∙mL-1∙min) up to 30 times over those of Fer free drug, after its intravenous/nasal administration (3.3 ± 0.3/5.16 ± 0.20 µg∙mL-1∙min, respectively) at the same dose. Chitosan presence further improved the prodrug brain uptake. CONCLUSIONS: Nasal administration of prodrug-loaded SLMs can be proposed as a noninvasive approach for neurodegenerative disease therapy.


Asunto(s)
Enfermedades Neurodegenerativas , Profármacos , Ratas , Animales , Administración Intranasal , Portadores de Fármacos , Antioxidantes/farmacología , Encéfalo , Antiinflamatorios , Tamaño de la Partícula
4.
Br J Pharmacol ; 180(21): 2777-2801, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37311647

RESUMEN

BACKGROUND AND PURPOSE: Psychotic disorders have been reported in long-term users of synthetic cannabinoids. This study aims at investigating the long-lasting effects of repeated JWH-018 exposure. EXPERIMENTAL APPROACH: Male CD-1 mice were injected with vehicle, JWH-018 (6 mg·kg-1 ), the CB1 -antagonist NESS-0327 (1 mg·kg-1 ) or co-administration of NESS-0327 and JWH-018, every day for 7 days. After 15 or 16 days washout, we investigated the effects of JWH-018 on motor function, memory, social dominance and prepulse inhibition (PPI). We also evaluated glutamate levels in dialysates from dorsal striatum, striatal dopamine content and striatal/hippocampal neuroplasticity focusing on the NMDA receptor complex and the neurotrophin BDNF. These measurements were accompanied by in vitro electrophysiological evaluations in hippocampal preparations. Finally, we investigated the density of CB1 receptors and levels of the endocannabinoid anandamide (AEA) and 2-arachidonoylglycerol (2-AG) and their main synthetic and degrading enzymes in the striatum and hippocampus. KEY RESULTS: The repeated treatment with JWH-018 induced psychomotor agitation while reducing social dominance, recognition memory and PPI in mice. JWH-018 disrupted hippocampal LTP and decreased BDNF expression, reduced the synaptic levels of NMDA receptor subunits and decreased the expression of PSD95. Repeated exposure to JWH-018, reduced hippocampal CB1 receptor density and induced a long-term alteration in AEA and 2-AG levels and their degrading enzymes, FAAH and MAGL, in the striatum. CONCLUSION AND IMPLICATIONS: Our findings suggest that repeated administration of a high dose of JWH-018 leads to the manifestation of psychotic-like symptoms accompanied by alterations in neuroplasticity and change in the endocannabinoid system.


Asunto(s)
Cannabinoides , Disfunción Cognitiva , Ratones , Masculino , Animales , Endocannabinoides/metabolismo , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Receptores de N-Metil-D-Aspartato , Cannabinoides/farmacología , Plasticidad Neuronal , Receptor Cannabinoide CB1/metabolismo
5.
Front Psychiatry ; 13: 996406, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36483135

RESUMEN

Introduction: Cannabis abuse during adolescence is a risk factor for cognitive impairments in psychiatric disorders later in life. To date, the possible causal relationship between cannabinoids, kynurenic acid (KYNA; i.e., a neuroactive metabolite of tryptophan degradation) and cognition has not been investigated in adolescence. Early exposure to delta 9-tetrahydrocannabinol (THC; i.e., the main psychotropic component of cannabis) causes enduring cognitive deficits, which critically involve impaired glutamatergic function in the prefrontal cortex (PFC). In addition, prenatal cannabis exposure results in enduring increases in PFC KYNA levels. Based on these findings, the effects of chronic THC exposure in rats, during another critical period of neurodevelopment particularly sensitive to perturbation by exogenous stimuli, such as adolescence, have been investigated. Methods: Male Wistar rats were chronically treated with vehicle or ascending intraperitoneal (i.p.) doses of THC starting on postnatal day (PND) 35 until PND 45. In adulthood (PND 75), cognitive assessment (Y-maze) and extracellular KYNA/glutamate levels were measured in the PFC by in vivo microdialysis, before and after a challenge with KYN (5 mg/kg i.p., the biological precursor of KYNA). By using the selective, brain-penetrable KAT II inhibitor PF-04859989, we then examined whether blockade of KYNA neosynthesis prevents the cognitive impairment. Results: Compared to vehicle-treated controls, extracellular basal KYNA levels were higher in the PFC of adult rats chronically exposed to THC in adolescence (p < 0.01). No changes were observed in extracellular glutamate levels. Following a challenge with KYN, extracellular KYNA levels similarly increased in both groups (i.e., vehicle- and THC-treated; p < 0.001 and p < 0.01, respectively). Chronic adolescent THC exposure negatively affected short-term memory (reduced spontaneous alternation), in adult animals (p < 0.001), while PF-04859989 (30 mg/kg i.p.) restored the cognitive impairment (p < 0.05). Discussion: We propose that the observed alterations in PFC KYNA signaling might be involved in the cognitive dysfunction induced by the exposure to THC during the adolescence. In the translational realm, these experiments raise the prospect of prevention of KYNA neosynthesis as a possible novel approach to counteract some of the detrimental long-term effects of adolescence cannabis use.

6.
Microb Cell Fact ; 21(1): 250, 2022 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-36419154

RESUMEN

Cortisone is a metabolite belonging to the corticosteroid class that is used pharmaceutically directly as a drug or prodrug. In addition to its large consumption, its use is linked to several side effects, so pharmaceutical research aims to develop effective drugs with low or no side effects, alternative compounds to cortisone are part of an active investment in ongoing research on drug discovery. Since biotransformation can be considered a source of new molecules with potential therapeutic use, the present work focuses on a preliminary in vitro study aimed at evaluating the mutagenic, anti-inflammatory, antioxidant and neuroprotective activity of SCA and SCB molecules obtained from the biotransformation of cortisone using Rh. Rhodnii strain DSM 43960. The results obtained are very encouraging due to the safety of biotransformed compounds with reference to genotoxicity checked by Ames test, to the very high antioxidant capacity and to the anti-inflammatory activity. In fact, thecompounds inhibited both the TNFα-stimulated expression and secretion of NFkB target cytokines, and COX activity, and can activate the glucocorticoid receptor. Finally SCA and SCB exhibited neuroprotective properties.


Asunto(s)
Cortisona , Antioxidantes/farmacología , Biotransformación , Esteroides , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico
7.
Front Aging Neurosci ; 14: 890855, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35686025

RESUMEN

The therapeutic potential of ultramicronized palmitoylethanolamide (um-PEA) was investigated in young (6-month-old) and adult (12-month-old) 3 × Tg-AD mice, which received um-PEA for 3 months via a subcutaneous delivery system. Mitochondrial bioenergetics, ATP homeostasis, and magnetic resonance imaging/magnetic resonance spectroscopy were evaluated in the frontal cortex (FC) and hippocampus (HIPP) at the end of um-PEA treatment. Glutamate release was investigated by in vivo microdialysis in the ventral HIPP (vHIPP). We demonstrated that chronic um-PEA treatment ameliorates the decrease in the complex-I respiration rate and the FoF1-ATPase (complex V) activity, as well as ATP content depletion in the cortical mitochondria. Otherwise, the impairment in mitochondrial bioenergetics and the release of glutamate after depolarization was not ameliorated by um-PEA treatment in the HIPP of both young and adult 3 × Tg-AD mice. Moreover, progressive age- and pathology-related changes were observed in the cortical and hippocampal metabolism that closely mimic the alterations observed in the human AD brain; these metabolic alterations were not affected by chronic um-PEA treatment. These findings confirm that the HIPP is the most affected area by AD-like pathology and demonstrate that um-PEA counteracts mitochondrial dysfunctions and helps rescue brain energy metabolism in the FC, but not in the HIPP.

8.
Front Psychiatry ; 12: 734984, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34603109

RESUMEN

Hypofunction of glutamatergic signaling is causally linked to neurodevelopmental disorders, including psychotic disorders like schizophrenia and bipolar disorder. Kynurenic acid (KYNA) has been found to be elevated in postmortem brain tissue and cerebrospinal fluid of patients with psychotic illnesses and may be involved in the hypoglutamatergia and cognitive dysfunction experienced by these patients. As insults during the prenatal period are hypothesized to be linked to the pathophysiology of psychotic disorders, we presently utilized the embryonic kynurenine (EKyn) paradigm to induce a prenatal hit. Pregnant Wistar dams were fed chow laced with kynurenine to stimulate fetal brain KYNA elevation from embryonic day 15 to embryonic day 22. Control dams (ECon) were fed unlaced chow. Plasma and hippocampal tissue from young adult (postnatal day 56) ECon and EKyn male and female offspring were collected at the beginning of the light (Zeitgeber time, ZT 0) and dark (ZT 12) phases to assess kynurenine pathway metabolites. Hippocampal tissue was also collected at ZT 6 and ZT 18. In separate animals, in vivo microdialysis was conducted in the dorsal hippocampus to assess extracellular KYNA, glutamate, and γ-aminobutyric acid (GABA). Biochemical analyses revealed no changes in peripheral metabolites, yet hippocampal tissue KYNA levels were significantly impacted by EKyn treatment, and increased in male EKyn offspring at ZT 6. Interestingly, extracellular hippocampal KYNA levels were only elevated in male EKyn offspring during the light phase. Decreases in extracellular glutamate levels were found in the dorsal hippocampus of EKyn male and female offspring, while decreased GABA levels were present only in males during the dark phase. The current findings suggest that the EKyn paradigm may be a useful tool for investigation of sex- and time-dependent changes in hippocampal neuromodulation elicited by prenatal KYNA elevation, which may influence behavioral phenotypes and have translational relevance to psychotic disorders.

10.
Pharmacol Rep ; 73(4): 1096-1108, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34426901

RESUMEN

The role of adenosine A2A receptor (A2AR) and striatal-enriched protein tyrosine phosphatase (STEP) interactions in the striatal-pallidal GABA neurons was recently discussed in relation to A2AR overexpression and cocaine-induced increases of brain adenosine levels. As to phosphorylation, combined activation of A2AR and metabotropic glutamate receptor 5 (mGluR5) in the striatal-pallidal GABA neurons appears necessary for phosphorylation of the GluA1 unit of the AMPA receptor to take place. Robert Yasuda (J Neurochem 152: 270-272, 2020) focused on finding a general mechanism by which STEP activation is enhanced by increased A2AR transmission in striatal-pallidal GABA neurons expressing A2AR and dopamine D2 receptor. In his Editorial, he summarized in a clear way the significant effects of A2AR activation on STEP in the dorsal striatal-pallidal GABA neurons which involves a rise of intracellular levels of calcium causing STEP activation through its dephosphorylation. However, the presence of the A2AR in an A2AR-fibroblast growth factor receptor 1 (FGFR1) heteroreceptor complex can be required in the dorsal striatal-pallidal GABA neurons for the STEP activation. Furthermore, Won et al. (Proc Natl Acad Sci USA 116: 8028-8037, 2019) found in mass spectrometry experiments that the STEP splice variant STEP61 can bind to mGluR5 and inactivate it. In addition, A2AR overexpression can lead to increased formation of A2AR-mGluR5 heterocomplexes in ventral striatal-pallidal GABA neurons. It involves enhanced facilitatory allosteric interactions leading to increased Gq-mediated mGluR5 signaling activating STEP. The involvement of both A2AR and STEP in the actions of cocaine on synaptic downregulation was also demonstrated. The enhancement of mGluR5 protomer activity by the A2AR protomer in A2AR-mGluR5 heterocomplexes in the nucleus accumbens shell appears to have a novel significant role in STEP mechanisms by both enhancing the activation of STEP and being a target for STEP61.


Asunto(s)
Neuronas GABAérgicas/fisiología , Fosforilación/genética , Fosforilación/fisiología , Células del Asta Posterior/fisiología , Receptor de Adenosina A2A/metabolismo , Animales , Cocaína/farmacología , Trastornos Relacionados con Cocaína/genética , Trastornos Relacionados con Cocaína/patología , Neuronas GABAérgicas/efectos de los fármacos , Fosforilación/efectos de los fármacos , Células del Asta Posterior/efectos de los fármacos , Subunidades de Proteína/efectos de los fármacos , Proteínas Tirosina Fosfatasas/genética , Receptor de Adenosina A2A/genética , Receptor del Glutamato Metabotropico 5/genética
11.
Cells ; 10(8)2021 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-34440670

RESUMEN

The heteroreceptor complexes present a novel biological principle for signal integration. These complexes and their allosteric receptor-receptor interactions are bidirectional and novel targets for treatment of CNS diseases including mental diseases. The existence of D2R-5-HT2AR heterocomplexes can help explain the anti-schizophrenic effects of atypical antipsychotic drugs not only based on blockade of 5-HT2AR and of D2R in higher doses but also based on blocking the allosteric enhancement of D2R protomer signaling by 5-HT2AR protomer activation. This research opens a new understanding of the integration of DA and 5-HT signals released from DA and 5-HT nerve terminal networks. The biological principle of forming 5-HT and other heteroreceptor complexes in the brain also help understand the mechanism of action for especially the 5-HT hallucinogens, including putative positive effects of e.g., psilocybin and the indicated prosocial and anti-stress actions of MDMA (ecstasy). The GalR1-GalR2 heterodimer and the putative GalR1-GalR2-5-HT1 heteroreceptor complexes are targets for Galanin N-terminal fragment Gal (1-15), a major modulator of emotional networks in models of mental disease. GPCR-receptor tyrosine kinase (RTK) heteroreceptor complexes can operate through transactivation of FGFR1 via allosteric mechanisms and indirect interactions over GPCR intracellular pathways involving protein kinase Src which produces tyrosine phosphorylation of the RTK. The exciting discovery was made that several antidepressant drugs such as TCAs and SSRIs as well as the fast-acting antidepressant drug ketamine can directly bind to the TrkB receptor and provide a novel mechanism for their antidepressant actions. Understanding the role of astrocytes and their allosteric receptor-receptor interactions in modulating forebrain glutamate synapses with impact on dorsal raphe-forebrain serotonin neurons is also of high relevance for research on major depressive disorder.


Asunto(s)
Astrocitos/metabolismo , Encéfalo/metabolismo , Neuronas Dopaminérgicas/metabolismo , Trastornos Mentales/metabolismo , Receptor Cross-Talk , Receptor de Serotonina 5-HT2A/metabolismo , Receptores de Serotonina 5-HT1/metabolismo , Neuronas Serotoninérgicas/metabolismo , Animales , Antidepresivos/uso terapéutico , Antipsicóticos/uso terapéutico , Encéfalo/efectos de los fármacos , Encéfalo/fisiopatología , Neuronas Dopaminérgicas/efectos de los fármacos , Humanos , Trastornos Mentales/tratamiento farmacológico , Trastornos Mentales/fisiopatología , Trastornos Mentales/psicología , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/metabolismo , Receptor de Galanina Tipo 1/metabolismo , Receptor de Galanina Tipo 2/metabolismo , Receptor de Serotonina 5-HT2A/genética , Receptores de Dopamina D2/metabolismo , Receptores de Serotonina 5-HT1/genética , Transducción de Señal
13.
J Control Release ; 335: 191-202, 2021 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-34019946

RESUMEN

Recently, many studies have shown that plant metabolites, such as geraniol (GER), may exert anti-inflammatory effects in neurodegenerative diseases and, in particular, Parkinson's disease (PD) models. Unfortunately, delivering GER to the CNS via nose-to-brain is not feasible due to its irritant effects on the mucosae. Therefore, in the present study ß-cyclodextrin (ßCD) and its hydrophilic derivative hydroxypropyl-beta-cyclodextrin (HPßCD) were selected as potential carriers for GER nose-to-brain delivery. Inclusion complexes were formulated and the biocompatibility with nasal mucosae and drug bioavailability into cerebrospinal fluid (CSF) were studied in rats. It has been demonstrated by DTA, FT-IR and NMR analyses that both the CDs were able to form 1:1 GER-CD complexes, arising long-term stable powders after the freeze-drying process. GER-HPßCD-5 and GER-ßCD-2 complexes exhibited comparable results, except for morphology and solubility, as demonstrated by SEM analysis and phase solubility study, respectively. Even though both complexes were able to directly and safely deliver GER to CNS, GER-ßCD-2 displayed higher ability in releasing GER in the CSF. In conclusion, ßCD complexes can be considered a very promising tool in delivering GER into the CNS via nose-to-brain route, preventing GER release into the bloodstream and ensuring the integrity of the nasal mucosa.


Asunto(s)
Ciclodextrinas , Enfermedades Neurodegenerativas , 2-Hidroxipropil-beta-Ciclodextrina , Monoterpenos Acíclicos , Animales , Encéfalo , Enfermedades Neurodegenerativas/tratamiento farmacológico , Polvos , Ratas , Solubilidad , Espectroscopía Infrarroja por Transformada de Fourier
14.
Front Pharmacol ; 12: 627032, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33790790

RESUMEN

The widespread distribution of heteroreceptor complexes with allosteric receptor-receptor interactions in the CNS represents a novel integrative molecular mechanism in the plasma membrane of neurons and glial cells. It was proposed that they form the molecular basis for learning and short-and long-term memories. This is also true for drug memories formed during the development of substance use disorders like morphine and cocaine use disorders. In cocaine use disorder it was found that irreversible A2AR-D2R complexes with an allosteric brake on D2R recognition and signaling are formed in increased densities in the ventral enkephalin positive striatal-pallidal GABA antireward neurons. In this perspective article we discuss and propose how an increase in opioid heteroreceptor complexes, containing MOR-DOR, MOR-MOR and MOR-D2R, and their balance with each other and A2AR-D2R complexes in the striatal-pallidal enkephalin positive GABA antireward neurons, may represent markers for development of morphine use disorders. We suggest that increased formation of MOR-DOR complexes takes place in the striatal-pallidal enkephalin positive GABA antireward neurons after chronic morphine treatment in part through recruitment of MOR from the MOR-D2R complexes due to the possibility that MOR upon morphine treatment can develop a higher affinity for DOR. As a result, increased numbers of D2R monomers/homomers in these neurons become free to interact with the A2A receptors found in high densities within such neurons. Increased numbers of A2AR-D2R heteroreceptor complexes are formed and contribute to enhanced firing of these antireward neurons due to loss of inhibitory D2R protomer signaling which finally leads to the development of morphine use disorder. Development of cocaine use disorder may instead be reduced through enkephalin induced activation of the MOR-DOR complex inhibiting the activity of the enkephalin positive GABA antireward neurons. Altogether, we propose that these altered complexes could be pharmacological targets to modulate the reward and the development of substance use disorders.

15.
Neuropharmacology ; 189: 108537, 2021 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-33798546

RESUMEN

Allosteric modulators of G protein coupled receptors (GPCRs), including GABABRs (GABABRs), are promising therapeutic candidates. While several positive allosteric modulators (PAM) of GABABRs have been characterized, only recently the first negative allosteric modulator (NAM) has been described. In the present study, we report the characterization of COR758, which acts as GABABR NAM in rat cortical membranes and CHO cells stably expressing GABABRs (CHO-GABAB). COR758 failed to displace the antagonist [3H]CGP54626 from the orthosteric binding site of GABABRs showing that it acts through an allosteric binding site. Docking studies revealed a possible new allosteric binding site for COR758 in the intrahelical pocket of the GABAB1 monomer. COR758 inhibited basal and GABABR-stimulated O-(3-[35Sthio)-triphosphate ([35S]GTPγS) binding in brain membranes and blocked the enhancement of GABABR-stimulated [35S]GTPγS binding by the PAM GS39783. Bioluminescent resonance energy transfer (BRET) measurements in CHO-GABAB cells showed that COR758 inhibited G protein activation by GABA and altered GABABR subunit rearrangements. Additionally, the compound altered GABABR-mediated signaling such as baclofen-induced inhibition of cAMP production in transfected HEK293 cells, agonist-induced Ca2+ mobilization as well as baclofen and the ago-PAM CGP7930 induced phosphorylation of extracellular signal-regulated kinases (ERK1/2) in CHO-GABAB cells. COR758 also prevented baclofen-induced outward currents recorded from rat dopamine neurons, substantiating its property as a NAM for GABABRs. Altogether, these data indicate that COR758 inhibits G protein signaling by GABABRs, likely by interacting with an allosteric binding-site. Therefore, COR758 might serve as a scaffold to develop additional NAMs for therapeutic intervention.


Asunto(s)
Moduladores del GABA/química , Moduladores del GABA/farmacología , Antagonistas de Receptores de GABA-B/química , Antagonistas de Receptores de GABA-B/farmacología , Receptores de GABA-B/fisiología , Regulación Alostérica/efectos de los fármacos , Regulación Alostérica/fisiología , Animales , Transferencia de Energía por Resonancia de Bioluminiscencia/métodos , Células CHO , Cricetulus , Relación Dosis-Respuesta a Droga , Agonistas de Receptores GABA-B/química , Agonistas de Receptores GABA-B/farmacología , Humanos , Masculino , Ratas , Ratas Sprague-Dawley , Ácido gamma-Aminobutírico/química , Ácido gamma-Aminobutírico/farmacología
16.
Int J Mol Sci ; 23(1)2021 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-35008687

RESUMEN

The cyclic nucleotides, cAMP and cGMP, are ubiquitous second messengers responsible for translating extracellular signals to intracellular biological responses in both normal and tumor cells. When these signals are aberrant or missing, cells may undergo neoplastic transformation or become resistant to chemotherapy. cGMP-hydrolyzing phosphodiesterases (PDEs) are attracting tremendous interest as drug targets for many diseases, including cancer, where they regulate cell growth, apoptosis and sensitization to radio- and chemotherapy. In breast cancer, PDE5 inhibition is associated with increased intracellular cGMP levels, which is responsible for the phosphorylation of PKG and other downstream molecules involved in cell proliferation or apoptosis. In this review, we provide an overview of the most relevant studies regarding the controversial role of PDE inhibitors as off-label adjuvants in cancer therapy.


Asunto(s)
Neoplasias de la Mama/prevención & control , Neoplasias de la Mama/terapia , GMP Cíclico/metabolismo , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 5/metabolismo , Animales , Ensayos Clínicos como Asunto , Femenino , Humanos , Óxido Nítrico/metabolismo , Transducción de Señal
17.
Int J Mol Sci ; 21(20)2020 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-33050345

RESUMEN

Alzheimer's disease (AD) is an age-related dementia and neurodegenerative disorder, characterized by Aß and tau protein deposition impairing learning, memory and suppressing synaptic plasticity of neurons. Increasing evidence suggests that there is a link between the glucose and glutamate alterations with age that down-regulates glucose utilization reducing glutamate levels in AD patients. Deviations in brain energy metabolism reinforce the development of AD by hampering glutamate levels in the brain. Glutamate is a nonessential amino acid and the major excitatory neurotransmitter synthesized from glucose. Alterations in cerebral glucose and glutamate levels precede the deposition of Aß plaques. In the brain, over 40% of neuronal synapses are glutamatergic and disturbances in glutamatergic function have been implicated in pathophysiology of AD. Nevertheless, targeting the glutamatergic system seems to be a promising strategy to develop novel, improved therapeutics for AD. Here, we review data supporting the involvement of the glutamatergic system in AD pathophysiology as well as the efficacy of glutamatergic agents in this neurodegenerative disorder. We also discuss exciting new prospects for the development of improved therapeutics for this devastating disorder.


Asunto(s)
Enfermedad de Alzheimer/etiología , Enfermedad de Alzheimer/metabolismo , Ácido Glutámico/metabolismo , Neuronas/metabolismo , Transmisión Sináptica , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/patología , Animales , Biomarcadores , Manejo de la Enfermedad , Susceptibilidad a Enfermedades , Glucosa/metabolismo , Humanos , Terapia Molecular Dirigida , Neuronas/efectos de los fármacos , Receptores Ionotrópicos de Glutamato/metabolismo , Transmisión Sináptica/efectos de los fármacos
18.
Brain Behav Immun ; 89: 440-450, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32726686

RESUMEN

The Brain-Derived Neurotrophic Factor (BDNF) Val66Met polymorphism has been correlated with increased predisposition to develop cognitive and psychiatric disorders, and with a reduced response to some therapeutic treatments. However, the mechanisms underlying these impairments are currently not completely understood. Remarkably, kynurenine pathway alterations have also been implicated in cognitive and psychiatric disorders. Moreover, recent evidence suggests that physical exercise may promote beneficial effects by controlling kynurenine metabolism in the muscle. The aim of the present study was to assess whether the kynurenine pathway was differentially regulated in sedentary and exercising wild-type (BDNFVal/Val) and homozygous knock-in BDNF Val66Met (BDNFMet/Met) mice. We found that plasma and hippocampal levels of kynurenic acid and the hippocampal mRNA levels of IDO1 and KAT2 protein levels were increased in BDNFMet/Met mice and were not modulated by physical exercise. On the contrary, KAT1 protein levels in the gastrocnemius muscle were reduced, whereas MCP1 mRNA in the gastrocnemius muscle and GFAP protein in the hippocampus were increased in BDNFMet/Met mice compared to BDNFVal/Val mice, and reduced by physical exercise. Physical exercise increased plasmatic kynurenine levels only in BDNFMet/Met mice, and protein levels of KAT1 and KAT4 in the gastrocnemius muscle and hippocampus respectively, regardless of the genotype. Finally, we found that physical exercise was able to enhance the hippocampal-dependent memory only in the BDNFVal/Val mice. Overall our results showing an overactivation of the kynurenine pathway in the BDNFMet/Met mice may suggest a possible mechanism underlying the cognitive deficits reported in the BDNF Val66Met carriers.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo , Quinurenina , Animales , Factor Neurotrófico Derivado del Encéfalo/genética , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Genotipo , Hipocampo/metabolismo , Ratones , Polimorfismo de Nucleótido Simple
19.
Life Sci ; 257: 118037, 2020 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-32622942

RESUMEN

Palmitoylethanolamide (PEA) is an endogenous lipid mediator that, also by blunting astrocyte activation, demonstrated beneficial properties in several in vitro and in vivo models of Alzheimer's disease (AD). In the present study, we used astrocyte-neuron co-cultures from 3xTg-AD mouse (i.e. an animal model of AD) cerebral cortex to further investigate on the role of astrocytes in PEA-induced neuroprotection. To this aim, we evaluated the number of viable cells, apoptotic nuclei, microtubule-associated protein-2 (MAP2) positive cells and morphological parameters in cortical neurons co-cultured with cortical astrocytes pre-exposed, or not, to Aß42 (0.5 µM; 24 h) or PEA (0.1 µM; 24 h). Pre-exposure of astrocytes to Aß42 failed to affect the viability, the number of neuronal apoptotic nuclei, MAP2 positive cell number, neuritic aggregations/100 µm, dendritic branches per neuron, the neuron body area, the length of the longest dendrite and number of neurites/neuron in 3xTg-AD mouse astrocyte-neuron co-cultures. Compared to neurons from wild-type (non-Tg) mouse co-cultures, 3xTg-AD mouse neurons co-cultured with astrocytes from this mutant mice displayed higher number of apoptotic nuclei, lower MAP2 immunoreactivity and several morphological changes. These signs of neuronal suffering were significantly counteracted when the 3xTg-AD mouse cortical neurons were co-cultured with 3xTg-AD mouse astrocytes pre-exposed to PEA. The present data suggest that in astrocyte-neuron co-cultures from 3xTg-AD mice, astrocytes contribute to neuronal damage and PEA, by possibly counteracting reactive astrogliosis, improved neuronal survival. These findings further support the role of PEA as a possible new therapeutic opportunity in AD treatment.


Asunto(s)
Astrocitos/efectos de los fármacos , Astrocitos/metabolismo , Etanolaminas/farmacología , Ácidos Palmíticos/farmacología , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Amidas , Péptidos beta-Amiloides/metabolismo , Animales , Supervivencia Celular/efectos de los fármacos , Corteza Cerebral/metabolismo , Técnicas de Cocultivo , Modelos Animales de Enfermedad , Etanolaminas/metabolismo , Gliosis , Humanos , Masculino , Ratones , Ratones Transgénicos , Proteínas Asociadas a Microtúbulos , Neuronas/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Ácidos Palmíticos/metabolismo , Proteínas tau/metabolismo
20.
Cells ; 9(5)2020 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-32349279

RESUMEN

In the 1980s and 1990s, the concept was introduced that molecular integration in the Central Nervous System could develop through allosteric receptor-receptor interactions in heteroreceptor complexes presents in neurons. A number of adenosine-dopamine heteroreceptor complexes were identified that lead to the A2A-D2 heteromer hypothesis of schizophrenia. The hypothesis is based on strong antagonistic A2A-D2 receptor-receptor interactions and their presence in the ventral striato-pallidal GABA anti-reward neurons leading to reduction of positive symptoms. Other types of adenosine A2A heteroreceptor complexes are also discussed in relation to this disease, such as A2A-D3 and A2A-D4 heteroreceptor complexes as well as higher order A2A-D2-mGluR5 and A2A-D2-Sigma1R heteroreceptor complexes. The A2A receptor protomer can likely modulate the function of the D4 receptors of relevance for understanding cognitive dysfunction in schizophrenia. A2A-D2-mGluR5 complex is of interest since upon A2A/mGluR5 coactivation they appear to synergize in producing strong inhibition of the D2 receptor protomer. For understanding the future of the schizophrenia treatment, the vulnerability of the current A2A-D2like receptor complexes will be tested in animal models of schizophrenia. A2A-D2-Simag1R complexes hold the highest promise through Sigma1R enhancement of inhibition of D2R function. In line with this work, Lara proposed a highly relevant role of adenosine for neurobiology of schizophrenia.


Asunto(s)
Receptor de Adenosina A2A/metabolismo , Receptores de Dopamina D2/metabolismo , Esquizofrenia/metabolismo , Adenosina/metabolismo , Encéfalo/metabolismo , Sistema Nervioso Central/metabolismo , Dopamina/metabolismo , Humanos , Neuronas/metabolismo , Receptor de Adenosina A2A/fisiología , Receptores de Dopamina D2/fisiología , Esquizofrenia/fisiopatología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA