Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Mass Spectrom ; 58(3): e4910, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36849135

RESUMEN

Soft ambient ionization sources generate reactive species that interact with analyte molecules to form intact molecular ions, which allows rapid, sensitive, and direct identification of the molecular mass. We used a dielectric barrier discharge ionization (DBDI) source with nitrogen at atmospheric pressure to detect alkylated aromatic hydrocarbon isomers (C8 H10 or C9 H12 ). Intact molecular ions [M]•+ were detected at 2.4 kVpp , but at increased voltage (3.4 kVpp ), [M + N]+ ions were formed, which could be used to differentiate regioisomers by collision-induced dissociation (CID). At 2.4 kVpp , alkylbenzene isomers with different alkyl-substituents could be identified by additional product ions: ethylbenzene and -toluene formed [M-2H]+ , isopropylbenzene formed abundant [M-H]+ , and propylbenzene formed abundant C7 H7 + . At an operating voltage of 3.4 kVpp , fragmentation of [M + N]+ by CID led to neutral loss of HCN and CH3 CN, which corresponded to steric hindrance for excited state N-atoms approaching the aromatic ring (C-H). The ratio of HCN to CH3 N loss (interday relative standard deviation [RSD] < 20%) was distinct for ethylbenzene and ethyltoluene isomers. The greater the number of alkyl-substituents (C-CH3 ) and the more sterically hindered (meta > para > ortho) the aromatic core, the greater the loss of CH3 CN relative to HCN was.

2.
Anal Chem ; 94(14): 5651-5657, 2022 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-35343676

RESUMEN

We tested a paper-based platform ("Aptapaper") for the upconcentration and analysis of small molecules from complex matrices for two well-characterized aptamers, quinine and serotonin binding aptamers (QBA and SBA, respectively). After incubating the aptapaper under conditions that ensure correct aptamer folding, the aptapaper was used to upconcentrate target analytes from complex matrices. Aptapaper was rinsed, dried, and the target analyte was detected immediately or up to 4 days later by paper spray ionization coupled to high-resolution mass spectrometry (PS-MS). The minimum concentrations detectable were 81 pg/mL and 1.8 ng/mL for quinine and serotonin, respectively, from 100 mM AmAc or water. Complementary characterization of the QBA aptapaper system was performed using an orthogonal fluorescence microscopy method. Random adsorption was analyte-specific and observed for quinine, but not serotonin. This aptapaper approach is a semiquantitative (10-20% RSD) platform for upconcentration of small metabolites by mass spectrometry.


Asunto(s)
Aptámeros de Nucleótidos , Aptámeros de Nucleótidos/química , Vidrio , Espectrometría de Masas/métodos , Quinina , Serotonina
3.
J Phys Chem A ; 126(10): 1743-1754, 2022 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-35239356

RESUMEN

The direct formation of N-heterocycles from aromatic hydrocarbons has been observed in nitrogen-based low-temperature plasmas; the mechanism of this unusual nitrogen-fixation reaction is the topic of this paper. We used homologous aromatic compounds to study their reaction with reactive nitrogen species (RNS) in a dielectric barrier discharge ionization (DBDI) source. Toluene (C7H8) served as a model compound to study the reaction in detail, which leads to the formation of two major products at "high" plasma voltage: a nitrogen-replacement product yielding protonated methylpyridine (C6H8N+) and a protonated nitrogen-addition (C7H8N+) product. We complemented those studies by a series of experiments probing the potential mechanism. Using a series of selected-ion flow tube experiments, we found that N+, N2+, and N4+ react with toluene to form a small abundance of the N-addition product, while N(4S) reacted with toluene cations to form a fragment ion. We created a model for the RNS in the plasma using variable electron and neutral density attachment mass spectrometry in a flowing afterglow Langmuir probe apparatus. These experiments suggested that excited-state nitrogen atoms could be responsible for the N-replacement product. Density functional theory calculations confirmed that the reaction of excited-state nitrogen N(2P) and N(2D) with toluene ions can directly form protonated methylpyridine, ejecting a carbon atom from the aromatic ring. N(2P) is responsible for this reaction in our DBDI source as it has a sufficient lifetime in the plasma and was detected by optical emission spectroscopy measurements, showing an increasing intensity of N(2P) with increasing voltage.


Asunto(s)
Hidrocarburos Aromáticos , Cationes/química , Espectrometría de Masas , Nitrógeno/química , Temperatura
4.
Anal Chem ; 94(6): 2873-2881, 2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-35113514

RESUMEN

Single-cell metabolomics is expected to deliver fast and dynamic information on cell function; therefore, it requires rapid analysis of a wide variety of very small quantities of metabolites in living cells. In this work, a hybrid ionization source that combines nanoelectrospray ionization (nanoESI) and dielectric barrier discharge ionization (DBDI) is proposed for single-cell analysis. A capillary with a 1 µm i.d. tip was inserted into cells for sampling and then directly used as the nanoESI source for ionization of polar metabolites. In addition, a DBDI source was employed as a post-ionization source to improve the ionization of apolar metabolites in cells that are not easily ionized by ESI. By increasing the voltage of the DBDI source from 0 to 3.2 kV, the classes of detected metabolites can be shifted from mostly polar to both polar and apolar to mainly apolar. Plant cells (onion) and human cells (PANC-1) were investigated in this study. After optimization, 50 compounds in onion cells and 40 compounds in PANC-1 cells were observed in ESI mode (3.5 kV) and an additional 49 compounds in onion cells and 73 compounds in PANC-1 cells were detected in ESI (3.5 kV)-DBDI (2.6 kV) hybrid mode. This hybrid ionization source improves the coverage, ionization efficiency, and limit of detection of metabolites with different polarities and could potentially contribute to the fast-growing field of single-cell metabolomics.


Asunto(s)
Metabolómica , Espectrometría de Masa por Ionización de Electrospray , Humanos
5.
Chem Sci ; 10(42): 9829-9835, 2019 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-32015805

RESUMEN

Collagen model peptides are useful for understanding the assembly and structure of collagen triple helices. The design of self-assembling heterotrimeric helices is particularly challenging and often affords mixtures of non-covalent assemblies that are difficult to characterize by conventional NMR and CD spectroscopic techniques. This can render a detailed understanding of the factors that control heterotrimer formation difficult and restrict rational design. Here, we present a novel method based on electrospray ionization mass spectrometry to investigate homo- and heterotrimeric collagen model peptides. Under native conditions, the high resolving power of mass spectrometry was used to access the stoichiometric composition of different triple helices in complex mixtures. A temperature-controlled electrospray ionization source was built to perform thermal denaturation experiments and provided melting temperatures of triple helices. These were found to be in good agreement with values obtained from CD spectroscopic measurements. Importantly, for mixtures of coexisting homo- and heterotrimers, which are difficult to analyze by conventional methods, our technique allowed for the identification and monitoring of the unfolding of each individual species. Their respective melting temperatures could easily be accessed in a single experiment, using small amounts of sample.

6.
Nanoscale ; 9(41): 15846-15855, 2017 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-28994435

RESUMEN

Here we report the preparation of hollow microspheres with a thin shell composed of mixed cobalt nitride (Co-N) and cobalt oxide (Co-O) nanofragments encapsulated in thin layers of nitrogen-doped carbon (N-C) nanostructure (Co-N/Co-O@N-C) arrays with enhanced bifunctional oxygen electrochemical performance. The hybrid structures are synthesized via heat treatment of N-doped hollow carbon microspheres with cobalt nitrate, and both the specific ratio of these precursors and the selected annealing temperature are found to be the key factors for the formation of the unique hybrid structure. The as-obtained product (Co-N/Co-O@N-C) presents a large specific surface area (493 m2 g-1), high-level heteroatom doping (Co-N, Co-O, and N-C), and hierarchical porous nanoarchitecture containing macroporous frameworks and mesoporous walls. Electronic interaction between the thin N-C layers and the encapsulated Co-N and Co-O nanofragments efficiently optimizes oxygen adsorption properties on the Co-N/Co-O@N-C and thereby triggers bifunctional oxygen electrochemical activity at the surface. The Co-N/Co-O@N-C nanohybrid exhibited a high onset potential of 0.93 V, and a limiting current density of 5.6 mA cm-2 indicating 4-electron oxygen reduction reaction (ORR), afforded high catalytic activity for the oxygen evolution reaction (OER) and even exceeded the catalytic stability of the commercial precious electrocatalysts; furthermore, when integrated into the oxygen electrode of a regenerative fuel cell device, it exhibited high-performance oxygen electrodes for both the ORR and the OER.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...