Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 166
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
ACS Cent Sci ; 10(5): 988-1000, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38799670

RESUMEN

Phosphomethylpyrimidine synthase (ThiC) catalyzes the conversion of AIR to the thiamin pyrimidine HMP-P. This reaction is the most complex enzyme-catalyzed radical cascade identified to date, and the detailed mechanism has remained elusive. In this paper, we describe the trapping of five new intermediates that provide snapshots of the ThiC reaction coordinate and enable the formulation of a revised mechanism for the ThiC-catalyzed reaction.

2.
J Am Chem Soc ; 145(22): 11933-11938, 2023 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-37229602

RESUMEN

Flavoenzymes are highly versatile and participate in the catalysis of a wide range of reactions, including key reactions in the metabolism of sulfur-containing compounds. S-Alkyl cysteine is formed primarily by the degradation of S-alkyl glutathione generated during electrophile detoxification. A recently discovered S-alkyl cysteine salvage pathway uses two flavoenzymes (CmoO and CmoJ) to dealkylate this metabolite in soil bacteria. CmoO catalyzes a stereospecific sulfoxidation, and CmoJ catalyzes the cleavage of one of the sulfoxide C-S bonds in a new reaction of unknown mechanism. In this paper, we investigate the mechanism of CmoJ. We provide experimental evidence that eliminates carbanion and radical intermediates and conclude that the reaction proceeds via an unprecedented enzyme-mediated modified Pummerer rearrangement. The elucidation of the mechanism of CmoJ adds a new motif to the flavoenzymology of sulfur-containing natural products and demonstrates a new strategy for the enzyme-catalyzed cleavage of C-S bonds.


Asunto(s)
Cisteína , Oxigenasas de Función Mixta , Cisteína/metabolismo , Sulfóxidos , Azufre , Flavinas
3.
J Am Chem Soc ; 145(8): 4421-4430, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36802573

RESUMEN

The yeast thiamin pyrimidine synthase THI5p catalyzes one of the most complex organic rearrangements found in primary metabolism. In this reaction, the active site His66 and PLP are converted to thiamin pyrimidine in the presence of Fe(II) and oxygen. The enzyme is a single-turnover enzyme. Here, we report the identification of an oxidatively dearomatized PLP intermediate. We utilize oxygen labeling studies, chemical-rescue-based partial reconstitution experiments, and chemical model studies to support this identification. In addition, we also identify and characterize three shunt products derived from the oxidatively dearomatized PLP.


Asunto(s)
Candida albicans , Pirimidinas , Pirimidinas/química , Tiamina/química , Oxígeno , Estrés Oxidativo
5.
J Am Chem Soc ; 144(24): 10711-10717, 2022 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-35675507

RESUMEN

The eukaryotic thiamin pyrimidine synthase, THI5p, has been identified as a suicidal/single-turnover enzyme that catalyzes the conversion of its active site histidine and lysine-bound pyridoxal phosphate (PLP) to the thiamin pyrimidine (HMP-P). Here we identify the histidine and PLP fragments using bottom-up proteomics and LC-MS analysis. We also identify the active form of the iron cofactor and quantitate the oxygen requirement of the THI5p reaction. This information is integrated into a mechanistic proposal for this remarkable reaction.


Asunto(s)
Saccharomyces cerevisiae , Tiamina , Histidina , Humanos , Fosfato de Piridoxal , Pirimidinas/química , Tiamina/química
6.
Biochemistry ; 61(11): 952-955, 2022 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-35584544

RESUMEN

In this paper, we describe the biochemical reconstitution of a cysteine salvage pathway and the biochemical characterization of each of the five enzymes involved. The salvage begins with amine acetylation of S-alkylcysteine, followed by thioether oxidation. The C-S bond of the resulting sulfoxide is cleaved using a new flavoenzyme catalytic motif to give N-acetylcysteine sulfenic acid. This is then reduced to the thiol and deacetylated to complete the salvage pathway. We propose that this pathway is important in the catabolism of alkylated cysteine generated by proteolysis of alkylated glutathione formed in the detoxification of a wide range of electrophiles.


Asunto(s)
Cisteína , Oxigenasas de Función Mixta , Bacillus subtilis/metabolismo , Cisteína/química , Remoción de Radical Alquila , Flavinas/metabolismo , Oxigenasas de Función Mixta/metabolismo
7.
Biochemistry ; 60(25): 1947-1951, 2021 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-34143602

RESUMEN

MqnD catalyzes the conversion of cyclic dehypoxanthine futalosine (6) to 5,8-dihydroxy-2-naphthoic acid (7) and an uncharacterized product. This study describes a chemoenzymatic synthesis of 6. This synthesis achieved a 2-fold yield enhancement by using titanium(III) citrate as the reducing agent and another 5-fold yield enhancement using a fluorinated analogue of dehypoxanthine futalosine (5) that was converted to 6 by an ipso substitution mechanism. This synthetic route enabled the synthesis of 6 in sufficient quantity to identify the second reaction product and to determine that the MqnD-catalyzed reaction proceeds by a hemiacetal ring opening-tautomerization-retroaldol sequence.


Asunto(s)
Proteínas Bacterianas/química , Liasas de Carbono-Oxígeno/química , Nucleósidos/química , Bacillus/enzimología , Modelos Químicos , Nucleósidos/síntesis química , Vitamina K 2/metabolismo
8.
Biochemistry ; 60(21): 1642-1646, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-33999605

RESUMEN

Aminofutalosine synthase (MqnE) is a radical SAM enzyme that catalyzes the conversion of 3-((1-carboxyvinyl)oxy)benzoic acid to aminofutalosine during the futalosine-dependent menaquinone biosynthesis. In this Communication, we report the trapping of a radical intermediate in the MqnE-catalyzed reaction using sodium dithionite, molecular oxygen, or 5,5-dimethyl-1-pyrroline-N-oxide. These radical trapping strategies are potentially of general utility in the study of other radical SAM enzymes.


Asunto(s)
Nucleósidos/química , Vitamina K 2/metabolismo , Catálisis , Espectroscopía de Resonancia por Spin del Electrón/métodos , Radicales Libres/química , Nucleósidos/metabolismo , Oxígeno/química
9.
J Am Chem Soc ; 142(24): 10841-10848, 2020 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-32434327

RESUMEN

The H-cluster of [FeFe]-hydrogenase consists of a [4Fe-4S]H-subcluster linked by a cysteinyl bridge to a unique organometallic [2Fe]H-subcluster assigned as the site of interconversion between protons and molecular hydrogen. This [2Fe]H-subcluster is assembled by a set of Fe-S maturase enzymes HydG, HydE and HydF. Here we show that the HydG product [FeII(Cys)(CO)2(CN)] synthon is the substrate of the radical SAM enzyme HydE, with the generated 5'-deoxyadenosyl radical attacking the cysteine S to form a C5'-S bond concomitant with reduction of the central low-spin Fe(II) to the Fe(I) oxidation state. This leads to the cleavage of the cysteine C3-S bond, producing a mononuclear [FeI(CO)2(CN)S] species that serves as the precursor to the dinuclear Fe(I)Fe(I) center of the [2Fe]H-subcluster. This work unveils the role played by HydE in the enzymatic assembly of the H-cluster and expands the scope of radical SAM enzyme chemistry.


Asunto(s)
Hidrogenasas/metabolismo , Compuestos de Hierro/metabolismo , S-Adenosilmetionina/metabolismo , Thermotoga maritima/enzimología , Biocatálisis , Hidrogenasas/química , Compuestos de Hierro/química , Conformación Molecular , S-Adenosilmetionina/química
10.
J Am Chem Soc ; 142(22): 9944-9954, 2020 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-32374991

RESUMEN

Cobalamin (Cbl)-dependent radical S-adenosylmethionine (SAM) methyltransferases catalyze methylation reactions at non-nucleophilic centers in a wide range of substrates. CysS is a Cbl-dependent radical SAM methyltransferase involved in cystobactamid biosynthesis. This enzyme catalyzes the sequential methylation of a methoxy group to form ethoxy, i-propoxy, s-butoxy, and t-butoxy groups on a p-aminobenzoate peptidyl carrier protein thioester intermediate. This biosynthetic strategy enables the host myxobacterium to biosynthesize a combinatorial antibiotic library of 25 cystobactamid analogues. In this Article, we describe three experiments to elucidate how CysS uses Cbl, SAM, and a [4Fe-4S] cluster to catalyze iterative methylation reactions: a cyclopropylcarbinyl rearrangement was used to trap the substrate radical and to estimate the rate of the radical substitution reaction involved in the methyl transfer; a bromoethoxy analogue was used to explore the active site topography; and deuterium isotope effects on the hydrogen atom abstraction by the adenosyl radical were used to investigate the kinetic significance of the hydrogen atom abstraction. On the basis of these experiments, a revised mechanism for CysS is proposed.


Asunto(s)
Amidas/metabolismo , Metiltransferasas/metabolismo , S-Adenosilmetionina/metabolismo , Amidas/química , Biocatálisis , Metiltransferasas/química , Estructura Molecular , S-Adenosilmetionina/química
11.
ACS Cent Sci ; 5(11): 1777-1785, 2019 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-31807679

RESUMEN

S-Adenosyl methionine (SAM) is employed as a [4Fe-4S]-bound cofactor in the superfamily of radical SAM (rSAM) enzymes, in which one-electron reduction of the [4Fe-4S]-SAM moiety leads to homolytic cleavage of the S-adenosyl methionine to generate the 5'-deoxyadenosyl radical (5'dAdo•), a potent H-atom abstractor. HydG, a member of this rSAM family, uses the 5'dAdo• radical to lyse its substrate, tyrosine, producing CO and CN that bind to a unique Fe site of a second HydG Fe-S cluster, ultimately producing a mononuclear organometallic Fe-l-cysteine-(CO)2CN complex as an intermediate in the bioassembly of the catalytic H-cluster of [Fe-Fe] hydrogenase. Here we report the use of non-native tyrosine substrate analogues to further probe the initial radical chemistry of HydG. One such non-native substrate is 4-hydroxy phenyl propanoic acid (HPPA) which lacks the amino group of tyrosine, replacing the CαH-NH2 with a CH2 at the C2 position. Electron paramagnetic resonance (EPR) studies show the generation of a strong and relatively stable radical in the HydG reaction with natural abundance and 13C2-HPPA, with appreciable spin density localized at C2. These results led us to try parallel experiments with the more oxidized non-native substrate coumaric acid, which has a C2=C3 alkene substitution relative to HPPA's single bond. Interestingly, the HydG reaction with the cis-p-coumaric acid isomer led to the trapping of a new radical EPR signal, and EPR studies using cis-p-coumaric acid along with isotopically labeled SAM reveal that we have for the first time trapped and characterized the 5'dAdo• radical in an actual rSAM enzyme reaction, here by using this specific non-native substrate cis-p-coumaric acid. Density functional theory energetics calculations show that the cis-p-coumaric acid has approximately the same C-H bond dissociation free energy as 5'dAdo•, providing a possible explanation for our ability to trap an appreciable fraction of 5'dAdo• in this specific rSAM reaction. The radical's EPR line shape and its changes with SAM isotopic substitution are nearly identical to those of a 5'dAdo• radical recently generated by cryophotolysis of a prereduced [4Fe-4S]-SAM center in another rSAM enzyme, pyruvate formate-lyase activating enzyme, further supporting our assignment that we have indeed trapped and characterized the 5'dAdo• radical in a radical SAM enzymatic reaction by appropriate tuning of the relative radical free energies via the judicious selection of a non-native substrate.

12.
Methods Enzymol ; 620: 455-468, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31072497

RESUMEN

Flavin-N5-oxide is a new intermediate in flavoenzymology. Here we describe the identification of DszA (dibenzothiophene catabolism), RutA (uracil catabolism) and HcbA1 (hexachlorobenzene catabolism) as flavin-N5-oxide-utilizing enzymes. Mechanistic analysis of these reactions suggests a model for the identification of other examples of this catalytic motif.


Asunto(s)
Proteínas Bacterianas/química , Pruebas de Enzimas/métodos , Flavinas/química , Oxigenasas/química , Proteínas Bacterianas/aislamiento & purificación , Biocatálisis , Escherichia coli , Hexaclorobenceno/química , Oxigenasas/aislamiento & purificación , Rhodococcus , Tiofenos/química , Uracilo/química
13.
Biochemistry ; 58(14): 1837-1840, 2019 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-30855131

RESUMEN

Menaquinone (MK, vitamin K) is a lipid-soluble quinone that participates in the bacterial electron transport chain. In mammalian cells, vitamin K functions as an essential vitamin for the activation of several proteins involved in blood clotting and bone metabolism. MqnA is the first enzyme on the futalosine-dependent pathway to menaquinone and catalyzes the aromatization of chorismate by water loss. Here we report biochemical and structural studies of MqnA. These studies suggest that the dehydration reaction proceeds by a variant of the E1cb mechanism in which deprotonation is slower than water loss and that the enol carboxylate of the substrate is serving as the base.


Asunto(s)
Proteínas Bacterianas/metabolismo , Vías Biosintéticas , Deinococcus/metabolismo , Oxo-Ácido-Liasas/metabolismo , Vitamina K 2/metabolismo , Proteínas Bacterianas/química , Deinococcus/enzimología , Concentración de Iones de Hidrógeno , Modelos Químicos , Estructura Molecular , Peso Molecular , Oxo-Ácido-Liasas/química , Protones , Vitamina K 2/química , Agua/química , Agua/metabolismo
14.
ACS Med Chem Lett ; 10(3): 363-366, 2019 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-30891141

RESUMEN

Aminofutalosine synthase (MqnE) catalyzes an important rearrangement reaction in menaquinone biosynthesis by the futalosine pathway. In this Letter, we report the identification of previously unreported inhibitors of MqnE using a mechanism-guided approach. The best inhibitor shows efficient inhibitory activity against H. pylori (IC50 = 1.8 ± 0.4 µM) and identifies MqnE as a promising target for antibiotic development.

15.
Biochemistry ; 58(9): 1181-1183, 2019 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-30702280

RESUMEN

HcbA1 is a unique flavoenzyme that catalyzes the first step in the bacterial hexachlorobenzene catabolic pathway. Here we report in vitro reconstitution of the HcbA1-catalyzed reaction. Detailed mechanistic studies provide evidence for nucleophilic aromatic substitution and flavin-N5-oxide formation.


Asunto(s)
Flavinas/metabolismo , Hexaclorobenceno/metabolismo , Oxigenasas/metabolismo , Catálisis , Flavinas/química , Hexaclorobenceno/química , Oxigenasas/química , Oxigenasas/genética
16.
Curr Opin Chem Biol ; 47: 134-141, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30447488

RESUMEN

The recently discovered futalosine-dependent menaquinone biosynthesis pathway employs radical chemistry for the naphthoquinol core assembly. Mechanistic studies on this pathway have resulted in the discovery of novel reaction motifs. MqnA is the first example of a chorismate dehydratase. MqnE is the first example of a radical SAM enzyme that catalyzes the addition of the 5'-deoxyadenosyl radical to the substrate double bond rather than hydrogen atom abstraction. Both MqnE and MqnC reaction sequences involve radical additions to a benzene ring followed by formation of an aryl radical anion intermediate. The enzymology of the tailoring reactions after dihydroxynaphthoic acid formation remains to be elucidated. Since the futalosine-dependent menaquinone biosynthesis pathway is absent in humans, mechanistic studies on this pathway may promote the development of new antibiotics.


Asunto(s)
Hidrolasas/metabolismo , Nucleósidos/metabolismo , Vitamina K 2/metabolismo , Ácido Corísmico/metabolismo , Humanos , Streptomyces coelicolor/enzimología , Streptomyces coelicolor/metabolismo
17.
J Am Chem Soc ; 140(40): 12798-12807, 2018 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-30208703

RESUMEN

Organisms that perform the de novo biosynthesis of cobalamin (vitamin B12) do so via unique pathways depending on the presence of oxygen in the environment. The anaerobic biosynthesis pathway of 5,6-dimethylbenzimidazole, the so-called "lower ligand" to the cobalt center, has been recently identified. This process begins with the conversion of 5-aminoimidazole ribotide (AIR) to 5-hydroxybenzimidazole (HBI) by the radical S-adenosyl-l-methionine (SAM) enzyme BzaF, also known as HBI synthase. In this work we report the characterization of a radical intermediate in the reaction of BzaF using electron paramagnetic resonance spectroscopy. Using various isotopologues of AIR, we extracted hyperfine parameters for a number of nuclei, allowing us to propose plausible chemical compositions and structures for this intermediate. Specifically, we find that an aminoimidazole radical is formed in close proximity to a fragment of the ribose ring. These findings induce the revision of past proposed mechanisms and illustrate the ability of radical SAM enzymes to tightly control the radical chemistry that they engender.


Asunto(s)
Proteínas Bacterianas/metabolismo , Bencimidazoles/metabolismo , Vías Biosintéticas , Desulfuromonas/metabolismo , Vitamina B 12/metabolismo , Anaerobiosis , Espectroscopía de Resonancia por Spin del Electrón , S-Adenosilmetionina/metabolismo
18.
Methods Enzymol ; 606: 155-178, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30097091

RESUMEN

Tryptophan lyase (NosL) is a radical SAM enzyme that catalyzes the formation of 3-methyl-2-indolic acid from l-tryptophan in the biosynthesis of the antibiotic nosiheptide. NosL is the newest addition to the radical SAM-dependent aromatic amino acid lyase subfamily which includes ThiH, HydG, and CofH. The recently solved crystal structure of NosL challenged the previously accepted mechanistic hypothesis and spurred a renewed interest in investigating the reaction. This led to a series of studies that unraveled several fascinating aspects of the fragmentation-recombination reaction. This chapter describes the various methodologies used for the overexpression of NosL, its purification, in vitro reconstitution, preparation of isotopically labeled substrates, and chemoenzymatic synthesis of substrate analogs. The methods described here can be used to further investigate other aromatic amino acid lyases as well as reactivity of fleeting radicals in enzymology.


Asunto(s)
Biocatálisis , Liasas de Carbono-Carbono/química , Pruebas de Enzimas/métodos , S-Adenosilmetionina/metabolismo , Liasas de Carbono-Carbono/genética , Liasas de Carbono-Carbono/aislamiento & purificación , Liasas de Carbono-Carbono/metabolismo , Clonación Molecular/métodos , Cristalografía por Rayos X , Estructura Molecular , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , S-Adenosilmetionina/química , Tiazoles/química , Tiazoles/metabolismo , Triptófano/química , Triptófano/metabolismo
19.
Methods Enzymol ; 606: 179-198, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30097092

RESUMEN

Aminofutalosine synthase (MqnE) is a radical SAM enzyme involved in the futalosine-dependent menaquinone biosynthetic pathway. Its ability to add the 5'-deoxyadenosyl radical to the substrate-rather than abstract a hydrogen atom-and to catalyze radical addition to a stable benzene ring gives it a unique place in the radical SAM superfamily and required the development of new strategies for trapping radical intermediates. This chapter describes the methodologies used for enzyme overexpression, purification, and in vitro reconstitution. We also describe the development of fast, radical triggered, carbon-halogen bond fragmentation reactions for the trapping of intermediates. We anticipate that these methods will be of general use in the study of other transient enzymatic radicals.


Asunto(s)
Transferasas Alquil y Aril/metabolismo , Secuencias de Aminoácidos , Proteínas Bacterianas/metabolismo , Pruebas de Enzimas/métodos , Nucleósidos/metabolismo , Transferasas Alquil y Aril/química , Transferasas Alquil y Aril/aislamiento & purificación , Proteínas Bacterianas/química , Proteínas Bacterianas/aislamiento & purificación , Biocatálisis , Vías Biosintéticas , Clonación Molecular/métodos , Radicales Libres/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , S-Adenosilmetionina/metabolismo , Thermus thermophilus/metabolismo , Vitamina K 2/metabolismo
20.
Methods Enzymol ; 606: 199-216, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30097093

RESUMEN

B12-dependent radical SAM enzymes that can perform methylations on sp3 carbon centers are important for functional diversity and regulation of biological activity in several nonribosomal peptides. Detailed studies on these enzymes are hindered by the complexity of the substrates and low levels of expression of active enzymes. CysS can catalyze iterative methylations of a methoxybenzene moiety during the biosynthesis of the cystobactamids. Here, we describe the overexpression, purification, substrate identification, and mechanism of this enzyme.


Asunto(s)
Proteínas Bacterianas/metabolismo , Pruebas de Enzimas/métodos , Metiltransferasas/metabolismo , Nitrocompuestos/metabolismo , Anisoles/metabolismo , Proteínas Bacterianas/aislamiento & purificación , Biocatálisis , Vías Biosintéticas , Ésteres/metabolismo , Radicales Libres/metabolismo , Metilación , Metiltransferasas/aislamiento & purificación , Myxococcales , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , S-Adenosilmetionina/metabolismo , Vitamina B 12/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...