Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Transl Med ; 13(618): eabh4284, 2021 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-34731016

RESUMEN

Sleep disruptions promote increases of amyloid ß (Aß) and tau in the brain and increase Alzheimer's disease (AD) risk, but the precise mechanisms that give rise to sleep disturbances have yet to be defined. The thalamic reticular nucleus (TRN) is essential for sleep maintenance and for the regulation of slow-wave sleep (SWS). We examined the TRN in transgenic mice that express mutant human amyloid precursor protein (APP) and found reduced neuronal activity, increased sleep fragmentation, and decreased SWS time as compared to nontransgenic littermates. Selective activation of the TRN using excitatory DREADDs restored sleep maintenance, increased time in SWS, and reduced amyloid plaque load in both hippocampus and cortex. Our findings suggest that the TRN may play a major role in symptoms associated with AD. Enhancing TRN activity might be a promising therapeutic strategy for AD.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animales , Modelos Animales de Enfermedad , Ratones , Ratones Transgénicos , Sueño
2.
Neuron ; 107(4): 631-643.e5, 2020 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-32516574

RESUMEN

A major challenge for miniature bioelectronics is wireless power delivery deep inside the body. Electromagnetic or ultrasound waves suffer from absorption and impedance mismatches at biological interfaces. On the other hand, magnetic fields do not suffer these losses, which has led to magnetically powered bioelectronic implants based on induction or magnetothermal effects. However, these approaches have yet to produce a miniature stimulator that operates at clinically relevant high frequencies. Here, we show that an alternative wireless power method based on magnetoelectric (ME) materials enables miniature magnetically powered neural stimulators that operate up to clinically relevant frequencies in excess of 100 Hz. We demonstrate that wireless ME stimulators provide therapeutic deep brain stimulation in a freely moving rodent model for Parkinson's disease and that these devices can be miniaturized to millimeter-scale and fully implanted. These results suggest that ME materials are an excellent candidate to enable miniature bioelectronics for clinical and research applications.


Asunto(s)
Estimulación Encefálica Profunda/instrumentación , Neuroestimuladores Implantables , Tecnología Inalámbrica/instrumentación , Animales , Diseño de Equipo , Humanos
3.
J Neurosci ; 40(25): 4813-4823, 2020 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-32414784

RESUMEN

During sleep, neurons in the thalamic reticular nucleus (TRN) participate in distinct types of oscillatory activity. While the reciprocal synaptic circuits between TRN and sensory relay nuclei are known to underlie the generation of sleep spindles, the mechanisms regulating slow (<1 Hz) forms of thalamic oscillations are not well understood. Under in vitro conditions, TRN neurons can generate slow oscillations in a cell-intrinsic manner, with postsynaptic Group 1 metabotropic glutamate receptor activation triggering long-lasting plateau potentials thought to be mediated by both T-type Ca2+ currents and Ca2+-activated nonselective cation currents (ICAN). However, the identity of ICAN and the possible contribution of thalamic circuits to slow rhythmic activity remain unclear. Using thalamic slices derived from adult mice of either sex, we recorded slow forms of rhythmic activity in TRN neurons, which were driven by fast glutamatergic thalamoreticular inputs but did not require postsynaptic Group 1 metabotropic glutamate receptor activation. For a significant fraction of TRN neurons, synaptic inputs or brief depolarizing current steps led to long-lasting plateau potentials and persistent firing (PF), and in turn, resulted in sustained synaptic inhibition in postsynaptic relay neurons of the ventrobasal thalamus (VB). Pharmacological approachesindicated that plateau potentials were triggered by Ca2+ influx through T-type Ca2+ channels and mediated by Ca2+- and voltage-dependent transient receptor potential melastatin 4 (TRPM4) channels. Together, our results suggest that thalamic circuits can generate slow oscillatory activity, mediated by an interplay of TRN-VB synaptic circuits that generate rhythmicity and TRN cell-intrinsic mechanisms that control PF and oscillation frequency.SIGNIFICANCE STATEMENT Slow forms of thalamocortical rhythmic activity are thought to be essential for memory consolidation during sleep and the efficient removal of potentially toxic metabolites. In vivo, thalamic slow oscillations are regulated by strong bidirectional synaptic pathways linking neocortex and thalamus. Therefore, in vitro studies in the isolated thalamus offer important insights about the ability of individual neurons and local circuits to generate different forms of rhythmic activity. We found that circuits formed by GABAergic neurons in the thalamic reticular nucleus and glutamatergic relay neurons in the ventrobasal thalamus generated slow oscillatory activity, which was accompanied by persistent firing in thalamic reticular nucleus neurons. Our results identify both cell-intrinsic and synaptic mechanisms that mediate slow forms of rhythmic activity in thalamic circuits.


Asunto(s)
Neuronas GABAérgicas/fisiología , Núcleos Talámicos Intralaminares/fisiología , Canales Catiónicos TRPM/metabolismo , Potenciales de Acción/fisiología , Animales , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Vías Nerviosas/fisiología , Técnicas de Cultivo de Órganos , Sueño/fisiología
4.
J Neurosci ; 38(23): 5338-5350, 2018 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-29739869

RESUMEN

Cholinergic afferents from the basal forebrain (BF) can influence cortical activity on rapid time scales, enabling sensory information processing and exploratory behavior. However, our understanding of how synaptically released acetylcholine (ACh) influences cellular targets in distinct cortical layers remains incomplete. Previous studies have shown that rapid changes in cortical dynamics induced by phasic BF activity can be mediated by the activation of nicotinic ACh receptors (nAChRs) expressed in distinct types of GABAergic interneurons. In contrast, muscarinic ACh receptors (mAChRs) are assumed to be involved in slower and more diffuse ACh signaling following sustained increases in afferent activity. Here, we examined the mechanisms underlying fast cholinergic control of cortical circuit dynamics by pairing optical stimulation of cholinergic afferents with evoked activity in somatosensory cortical slices of mice of either sex. ACh release evoked by single stimuli led to a rapid and persistent suppression of cortical activity, mediated by mAChRs expressed in layer 4 and to a lesser extent, by nAChRs in layers 1-3. In agreement, we found that cholinergic inputs to layer 4 evoked short-latency and long-lasting mAChR-dependent inhibition of the large majority of excitatory neurons, whereas inputs to layers 1-3 primarily evoked nAChR-dependent excitation of different classes of interneurons. Our results indicate that the rapid cholinergic control of cortical network dynamics is mediated by both nAChRs and mAChRs-dependent mechanisms, which are expressed in distinct cortical layers and cell types.SIGNIFICANCE STATEMENT Acetylcholine (ACh) release from basal forebrain (BF) afferents to cortex influences a variety of cognitive functions including attention, sensory processing, and learning. Cholinergic control occurs on the time scale of seconds and is mediated by BF neurons that generate action potentials at low rates, indicating that ACh acts as a point-to-point neurotransmitter. Our findings highlight that even brief activation of cholinergic afferents can recruit both nicotinic and muscarinic ACh receptors expressed in several cell types, leading to modulation of cortical activity on distinct time scales. Furthermore, they indicate that the initial stages of cortical sensory processing are under direct cholinergic control.


Asunto(s)
Acetilcolina/metabolismo , Receptores Muscarínicos/metabolismo , Corteza Somatosensorial/fisiología , Transmisión Sináptica/fisiología , Animales , Femenino , Masculino , Ratones Transgénicos , Red Nerviosa/fisiología , Técnicas de Cultivo de Órganos , Receptores Nicotínicos/metabolismo
5.
Brain Struct Funct ; 223(6): 2685-2698, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29569009

RESUMEN

Stress evokes directed movement to escape or hide from potential danger. Corticotropin-releasing factor (CRF) neurons are highly activated by stress; however, it remains unclear how this activity participates in stress-evoked movement. The external globus pallidus (GPe) expresses high levels of the primary receptor for CRF, CRFR1, suggesting the GPe may serve as an entry point for stress-relevant information to reach basal ganglia circuits, which ultimately gate motor output. Indeed, projections from CRF neurons are present within the GPe, making direct contact with CRFR1-positive neurons. CRFR1 expression is heterogenous in the GPe; prototypic GPe neurons selectively express CRFR1, while arkypallidal neurons do not. Moreover, CRFR1-positive GPe neurons are excited by CRF via activation of CRFR1, while nearby CRFR1-negative neurons do not respond to CRF. Using monosynaptic rabies viral tracing techniques, we show that CRF neurons in the stress-activated paraventricular nucleus of the hypothalamus (PVN), central nucleus of the amygdala (CeA), and bed nucleus of the stria terminalis (BST) make synaptic connections with CRFR1-positive neurons in the GPe an unprecedented circuit connecting the limbic system with the basal ganglia. CRF neurons also make synapses on Npas1 neurons, although the majority of Npas1 neurons are arkypallidal and do not express CRFR1. Interestingly, prototypic and arkypallidal neurons receive different patterns of innervation from CRF-rich nuclei. Hypothalamic CRF neurons preferentially target prototypic neurons, while amygdalar CRF neurons preferentially target arkypallidal neurons, suggesting that these two inputs to the GPe may have different impacts on GPe output. Together, these data describe a novel neural circuit by which stress-relevant information carried by the limbic system signals in the GPe via CRF to influence motor output.


Asunto(s)
Amígdala del Cerebelo/citología , Hormona Liberadora de Corticotropina/metabolismo , Globo Pálido/citología , Neuronas/citología , Núcleo Hipotalámico Paraventricular/citología , Sinapsis/metabolismo , Potenciales de Acción/efectos de los fármacos , Animales , Femenino , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Técnicas In Vitro , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Masculino , Ratones , Ratones Transgénicos , Neurotransmisores/farmacología , Técnicas de Placa-Clamp , Pirimidinas/farmacología , Pirroles/farmacología , Receptores de Hormona Liberadora de Corticotropina/antagonistas & inhibidores , Receptores de Hormona Liberadora de Corticotropina/genética , Receptores de Hormona Liberadora de Corticotropina/metabolismo , Transducción Genética , Proteína Fluorescente Roja
6.
Nano Lett ; 18(1): 326-335, 2018 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-29220192

RESUMEN

Soft and conductive nanomaterials like carbon nanotubes, graphene, and nanowire scaffolds have expanded the family of ultraflexible microelectrodes that can bend and flex with the natural movement of the brain, reduce the inflammatory response, and improve the stability of long-term neural recordings. However, current methods to implant these highly flexible electrodes rely on temporary stiffening agents that temporarily increase the electrode size and stiffness thus aggravating neural damage during implantation, which can lead to cell loss and glial activation that persists even after the stiffening agents are removed or dissolve. A method to deliver thin, ultraflexible electrodes deep into neural tissue without increasing the stiffness or size of the electrodes will enable minimally invasive electrical recordings from within the brain. Here we show that specially designed microfluidic devices can apply a tension force to ultraflexible electrodes that prevents buckling without increasing the thickness or stiffness of the electrode during implantation. Additionally, these "fluidic microdrives" allow us to precisely actuate the electrode position with micron-scale accuracy. To demonstrate the efficacy of our fluidic microdrives, we used them to actuate highly flexible carbon nanotube fiber (CNTf) microelectrodes for electrophysiology. We used this approach in three proof-of-concept experiments. First, we recorded compound action potentials in a soft model organism, the small cnidarian Hydra. Second, we targeted electrodes precisely to the thalamic reticular nucleus in brain slices and recorded spontaneous and optogenetically evoked extracellular action potentials. Finally, we inserted electrodes more than 4 mm deep into the brain of rats and detected spontaneous individual unit activity in both cortical and subcortical regions. Compared to syringe injection, fluidic microdrives do not penetrate the brain and prevent changes in intracranial pressure by diverting fluid away from the implantation site during insertion and actuation. Overall, the fluidic microdrive technology provides a robust new method to implant and actuate ultraflexible neural electrodes.


Asunto(s)
Dispositivos Laboratorio en un Chip , Nanotubos de Carbono/química , Neuronas/fisiología , Potenciales de Acción , Animales , Encéfalo/fisiología , Elasticidad , Diseño de Equipo , Hydra/fisiología , Microelectrodos , Ratas
7.
Cold Spring Harb Protoc ; 2017(6): pdb.prot095836, 2017 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-28572192

RESUMEN

This protocol describes how to obtain monosynaptic cholinergic responses in neurons of the thalamic reticular nucleus (TRN) by making use of extracellular stimulation techniques. These methods are easy to implement and allow for the study of various forms of cholinergic synaptic plasticity and modulation. For many synapses throughout the mammalian brain, short-term plasticity is mediated by endocannabinoids released from postsynaptic neurons that activate presynaptic type I cannabinoid receptors (CB1Rs), resulting in the inhibition of presynaptic Ca2+ channels and a reduction of release probability. Neurons in the TRN are known to liberate endocannabinoids that can control transmitter release at GABAergic terminals. However, expression of CB1Rs on cholinergic terminals contacting the TRN has not been demonstrated. Here we outline strategies aimed to record stable postsynaptic responses and to quantify changes in cholinergic synaptic strength, using presynaptic modulation of acetylcholine (ACh) release by a CB1R agonist as an illustrative example.


Asunto(s)
Antagonistas de Receptores de Cannabinoides/metabolismo , Neuronas Colinérgicas/fisiología , Receptor Cannabinoide CB1/metabolismo , Transmisión Sináptica , Núcleos Talámicos/fisiología , Animales , Mamíferos
8.
Cold Spring Harb Protoc ; 2017(6): pdb.top095083, 2017 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-28572212

RESUMEN

Release of acetylcholine (ACh) in the brain controls several cognitive processes, and a number of disorders including Alzheimer's and Parkinson's diseases are associated with a loss of cholinergic function. Despite the importance of ACh signaling in modulating information processing in thalamocortical circuits, understanding the dynamics of cholinergic function has long been limited by a lack of in vitro model systems. Recent studies employing both electrical as well as optogenetic stimulation techniques have overcome this challenge, resulting in the identification of multiple forms of fast cholinergic signaling throughout the mammalian brain. Here we highlight a simple strategy making use of extracellular electrical stimulation techniques that allows for the study of cholinergic synaptic inputs onto neurons in the thalamic reticular nucleus (TRN).


Asunto(s)
Neuronas Colinérgicas/fisiología , Estimulación Eléctrica/métodos , Transmisión Sináptica , Núcleos Talámicos/fisiología , Animales , Mamíferos , Optogenética/métodos
9.
J Neurosci ; 36(30): 7886-96, 2016 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-27466334

RESUMEN

UNLABELLED: Acetylcholine (ACh) signaling is involved in a wide range of processes, including arousal, attention, and learning. An increasing number of studies indicate that cholinergic control of these functions is highly deterministic, mediated by synaptic afferents that generate reliable and precise responses in postsynaptic neurons. However, mechanisms that govern plastic changes of cholinergic synaptic strength are poorly understood, even though they are likely critical in shaping the impact of cholinergic inputs on neuronal networks. We have recently shown that in the thalamic reticular nucleus (TRN), synaptic release of ACh generates excitatory-inhibitory biphasic postsynaptic responses, mediated by the activation of α4ß2 nicotinic (nAChRs) and M2 muscarinic receptors (mAChRs), respectively. Here, using voltage-clamp recordings from TRN neurons in thalamocortical slices of mice, we demonstrate that the activation of Group I metabotropic glutamate receptors (mGluRs) by ambient or synaptically released glutamate evokes transient increases of nicotinic EPSCs. Additionally, we find that the selective Group I mGluR agonist DHPG [(S)-3,5-dihydroxyphenylglycine] evokes long-term potentiation of nicotinic EPSCs (mGluR-nLTP), dependent on increases in postsynaptic Ca(2+) concentration and the activation of phospholipase C. Both the induction and the maintenance of mGluR-nLTP require synergistic activation of mGluR1 and mGluR5. Together, our results show that postsynaptic Group I mGluRs are critically involved in the regulation of cholinergic synaptic strength on different time scales, suggesting that cholinergic control of local thalamic circuits is highly context-dependent and regulated by the overall levels of glutamatergic afferent activity. SIGNIFICANCE STATEMENT: Cholinergic signaling controls information processing and plasticity in neuronal circuits, but the mechanisms underlying the regulation of cholinergic synaptic strength on different time scales are unknown. Here we identify mGluR1 and mGluR5 as key elements in the dynamic regulation of cholinergic synaptic inputs onto neurons of the TRN. Our findings highlight potential mechanisms that regulate cholinergic signaling in the mammalian brain.


Asunto(s)
Neuronas Colinérgicas/fisiología , Plasticidad Neuronal/fisiología , Receptor del Glutamato Metabotropico 5/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Transmisión Sináptica/fisiología , Núcleos Talámicos Ventrales/fisiología , Potenciales de Acción/fisiología , Animales , Femenino , Ácido Glutámico/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neurotransmisores/metabolismo
10.
J Neurosci ; 34(43): 14463-74, 2014 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-25339757

RESUMEN

Synchronous neuronal activity in the thalamocortical system is critical for a number of behaviorally relevant computations, but hypersynchrony can limit information coding and lead to epileptiform responses. In the somatosensory thalamus, afferent inputs are transformed by networks of reciprocally connected thalamocortical neurons in the ventrobasal nucleus (VB) and GABAergic neurons in the thalamic reticular nucleus (TRN). These networks can generate oscillatory activity, and studies in vivo and in vitro have suggested that thalamic oscillations are often accompanied by synchronous neuronal activity, in part mediated by widespread divergence and convergence of both reticulothalamic and thalamoreticular pathways, as well as by electrical synapses interconnecting TRN neurons. However, the functional organization of thalamic circuits and its role in shaping input-evoked activity patterns remain poorly understood. Here we show that optogenetic activation of cholinergic synaptic afferents evokes near-synchronous firing in mouse TRN neurons that is rapidly desynchronized in thalamic networks. We identify several mechanisms responsible for desynchronization: (1) shared inhibitory inputs in local VB neurons leading to asynchronous and imprecise rebound bursting; (2) TRN-mediated lateral inhibition that further desynchronizes firing in the VB; and (3) powerful yet sparse thalamoreticular connectivity that mediates re-excitation of the TRN but preserves asynchronous firing. Our findings reveal how distinct local circuit features interact to desynchronize thalamic network activity.


Asunto(s)
Corteza Cerebral/fisiología , Neuronas Colinérgicas/fisiología , Sincronización de Fase en Electroencefalografía/fisiología , Red Nerviosa/fisiología , Tálamo/fisiología , Animales , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Técnicas de Cultivo de Órganos
12.
J Physiol ; 592(19): 4137-45, 2014 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-24973413

RESUMEN

Neuronal networks of the thalamus are the target of extensive cholinergic projections from the basal forebrain and the brainstem. Activation of these afferents can regulate neuronal excitability, transmitter release, and firing patterns in thalamic networks, thereby altering the flow of sensory information during distinct behavioural states. However, cholinergic regulation in the thalamus has been primarily examined by using receptor agonist and antagonist, which has precluded a detailed understanding of the spatiotemporal dynamics that govern cholinergic signalling under physiological conditions. This review summarizes recent studies on cholinergic synaptic transmission in the thalamic reticular nucleus (TRN), a brain structure intimately involved in the control of sensory processing and the generation of rhythmic activity in the thalamocortical system. This work has shown that acetylcholine (ACh) released from individual axons can rapidly and reliably activate both pre- and postsynaptic cholinergic receptors, thereby controlling TRN neuronal activity with high spatiotemporal precision.


Asunto(s)
Acetilcolina/metabolismo , Neuronas/metabolismo , Receptores Colinérgicos/metabolismo , Sinapsis/metabolismo , Transmisión Sináptica/fisiología , Núcleos Talámicos/metabolismo , Potenciales de Acción/fisiología , Animales
13.
J Neurosci ; 33(5): 2048-59, 2013 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-23365242

RESUMEN

Cholinergic neurons in the basal forebrain and the brainstem form extensive projections to a number of thalamic nuclei. Activation of cholinergic afferents during distinct behavioral states can regulate neuronal firing, transmitter release at glutamatergic and GABAergic synapses, and synchrony in thalamic networks, thereby controlling the flow of sensory information. These effects are thought to be mediated by slow and persistent increases in extracellular ACh levels, resulting in the modulation of populations of thalamic neurons over large temporal and spatial scales. However, the synaptic mechanisms underlying cholinergic signaling in the thalamus are not well understood. Here, we demonstrate highly reliable cholinergic transmission in the mouse thalamic reticular nucleus (TRN), a brain structure essential for sensory processing, arousal, and attention. We find that ACh release evoked by low-frequency stimulation leads to biphasic excitatory-inhibitory (E-I) postsynaptic responses, mediated by the activation of postsynaptic α4ß2 nicotinic ACh receptors (nAChRs) and M2 muscarinic ACh receptors (mAChRs), respectively. In addition, ACh can bind to mAChRs expressed near cholinergic release sites, resulting in autoinhibition of release. We show that the activation of postsynaptic nAChRs by transmitter release from only a small number of individual axons is sufficient to trigger action potentials in TRN neurons. Furthermore, short trains of cholinergic synaptic inputs can powerfully entrain ongoing TRN neuronal activity. Our study demonstrates fast and precise synaptic E-I signaling mediated by ACh, suggesting novel computational mechanisms for the cholinergic control of neuronal activity in thalamic circuits.


Asunto(s)
Acetilcolina/metabolismo , Potenciales de Acción/fisiología , Núcleos Talámicos Intralaminares/fisiología , Neuronas/fisiología , Transmisión Sináptica/fisiología , Potenciales de Acción/efectos de los fármacos , Animales , Inhibidores de la Colinesterasa/farmacología , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/fisiología , Femenino , Núcleos Talámicos Intralaminares/efectos de los fármacos , Masculino , Ratones , Neuronas/efectos de los fármacos , Fisostigmina/farmacología , Receptores Colinérgicos/metabolismo , Sinapsis/efectos de los fármacos , Sinapsis/fisiología , Transmisión Sináptica/efectos de los fármacos
14.
Cold Spring Harb Protoc ; 2013(1)2013 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-23282638

RESUMEN

This protocol describes methods for recording synaptically evoked Ca(2+) waves from individual Bergmann glia (BG) in slices of cerebellar cortex. Unlike protoplasmic, star-shaped astrocytes, whose thin processes pose a serious challenge to stable Ca(2+) measurements, BG are large radial cells, with several main processes that run over distances of several hundred micrometers toward the pia and ensheathe thousands of parallel fiber (PF) synapses. Stimulation of PF synapses with brief bursts can trigger long-lasting Ca(2+) responses in BG processes, which can be reliably recorded using a cooled charge-coupled device (CCD) camera. This protocol was developed to enable measurements of Ca(2+) waves in individual BG loaded with a high-affinity Ca(2+) indicator such as Fura-2 for up to 2 h. Because BG recorded in slices rarely display spontaneous (i.e., tetrodotoxin [TTX]-sensitive) or intrinsic Ca(2+) transients, Ca(2+) waves can be evoked repeatedly and reliably, which permits quantitative studies using pharmacological tools. Fluorescence measurements obtained using CCD technology offer a straightforward means of characterizing the mechanisms and potential functional consequences of widespread and long-lasting, store-mediated Ca(2+) increases in astrocytes.


Asunto(s)
Señalización del Calcio , Corteza Cerebral/fisiología , Procesamiento de Imagen Asistido por Computador/métodos , Neuroglía/fisiología , Neuroimagen/métodos , Calcio/análisis , Fluorescencia , Fura-2/metabolismo , Técnicas In Vitro , Coloración y Etiquetado/métodos
15.
J Neurosci ; 32(23): 7782-90, 2012 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-22674255

RESUMEN

GABAergic neurons in the thalamic reticular nucleus (TRN) form powerful inhibitory connections with several dorsal thalamic nuclei, thereby controlling attention, sensory processing, and synchronous oscillations in the thalamocortical system. TRN neurons are interconnected by a network of GABAergic synapses, but their properties and their role in shaping TRN neuronal activity are not well understood. Using recording techniques aimed to minimize changes in the intracellular milieu, we show that synaptic GABA(A) receptor activation triggers postsynaptic depolarizations in mouse TRN neurons. Immunohistochemical data indicate that TRN neurons express very low levels of the Cl(-) transporter KCC2. In agreement, perforated-patch recordings show that intracellular Cl(-) levels are high in TRN neurons, resulting in a Cl(-) reversal potential (E(Cl)) significantly depolarized from rest. Additionally, we find that GABA(A) receptor-evoked depolarizations are amplified by the activation of postsynaptic T-type Ca(2+) channels, leading to dendritic Ca(2+) increases and the generation of burst firing in TRN neurons. In turn, GABA-evoked burst firing results in delayed and long-lasting feedforward inhibition in thalamic relay cells. Our results show that GABA-evoked depolarizations can interact with T-type Ca(2+) channels to powerfully control spike generation in TRN neurons.


Asunto(s)
Potenciales de Acción/fisiología , Neuronas/fisiología , Transmisión Sináptica/fisiología , Núcleos Talámicos/fisiología , Ácido gamma-Aminobutírico/fisiología , Potenciales de Acción/efectos de los fármacos , Animales , Canales de Calcio Tipo T/fisiología , Femenino , Antagonistas del GABA/farmacología , Inmunohistoquímica , Técnicas In Vitro , Masculino , Ratones , Ratones Endogámicos C57BL , Microscopía Fluorescente , Red Nerviosa/citología , Red Nerviosa/fisiología , Técnicas de Placa-Clamp , Receptores de GABA-B/efectos de los fármacos , Receptores de GABA-B/fisiología , Simportadores/genética , Simportadores/fisiología , Sinapsis/efectos de los fármacos , Sinapsis/fisiología , Transmisión Sináptica/efectos de los fármacos , Núcleos Talámicos/citología , Ácido gamma-Aminobutírico/farmacología , Cotransportadores de K Cl
16.
J Neurosci ; 31(25): 9222-30, 2011 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-21697372

RESUMEN

Inhibitory neurons in the thalamic reticular nucleus (TRN) play a critical role in controlling information transfer between thalamus and neocortex. GABAergic synapses formed by TRN neurons contact both thalamic relay cells and neurons within TRN. These two types of synapses are thought to have distinct roles for the generation of thalamic network activity, but their selective regulation is poorly understood. In many areas throughout the brain, retrograde signaling mediated by endocannabinoids acts to dynamically regulate synaptic strength over both short and long time scales. However, retrograde signaling has never been demonstrated in the thalamus. Here, we show that depolarization-induced suppression of inhibition (DSI) is prominent at inhibitory synapses interconnecting TRN neurons. DSI is completely abolished in the presence of a cannabinoid receptor 1 (CB1R) antagonist and in mice lacking CB1Rs. DSI is prevented by DAG lipase inhibitors and prolonged by blocking the 2-arachidonoylglycerol (2-AG) degradation enzyme monoacylglycerol lipase, indicating that it is mediated by the release of 2-AG from TRN neurons. By contrast, DSI is not observed at TRN synapses targeting thalamic relay neurons. A combination of pharmacological and immunohistochemical data indicate that the differences in endocannabinoid signaling at the two synapses are mediated by a synapse-specific targeting of CB1Rs, as well as differences in endocannabinoid release between the two target neurons. Together, our results show that endocannabinoids control transmitter release at specific thalamic synapses, and could dynamically regulate sensory information processing and thalamus-mediated synchronous oscillations.


Asunto(s)
Potenciales de Acción/fisiología , Moduladores de Receptores de Cannabinoides/metabolismo , Endocannabinoides , Inhibición Neural/fisiología , Neuronas/fisiología , Receptores de Cannabinoides/metabolismo , Transmisión Sináptica/fisiología , Tálamo/fisiología , Animales , Células Cultivadas , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL
17.
J Neurophysiol ; 105(5): 2319-29, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21325678

RESUMEN

Glutamatergic synapses of layer 6 corticothalamic (CT) neurons form a major excitatory input onto thalamic relay cells, allowing neocortex to continuously control sensory information processing in thalamic circuits. CT synapses display both short- and long-term forms of use-dependent synaptic enhancement, mediated at least in part by increases in the probability of transmitter release. At some synapses, such increases in release probability are accompanied by a higher degree of multivesicular release (MVR) and larger glutamate transients at individual release sites, resulting in the saturation of postsynaptic receptors. The extent to which MVR and postsynaptic saturation interact and control short-term plasticity at CT synapses is not known. Here we examined two distinct presynaptic forms of short-term enhancement, facilitation and augmentation, at CT synapses contacting relay neurons in the ventrobasal nucleus of the mouse thalamus. We found that, in the presence of the low-affinity antagonist γ-D-glutamylglycine, to relieve postsynaptic DL-α-amino-3-hydroxy-5-methylisox azole-propionic acid (AMPA) receptor saturation, the magnitude of facilitation and augmentation increased. Whereas receptor saturation was prominent for both AMPA and N-methyl-D-aspartate receptors, desensitization of AMPA receptors did not significantly alter short-term plasticity. Our results suggest that at CT synapses the activity-dependent increase in synaptic strength is controlled by postsynaptic receptor saturation.


Asunto(s)
Corteza Cerebral/fisiología , Plasticidad Neuronal/fisiología , Receptores AMPA/fisiología , Receptores de N-Metil-D-Aspartato/fisiología , Sinapsis/fisiología , Tálamo/fisiología , Animales , Corteza Cerebral/efectos de los fármacos , Antagonistas de Aminoácidos Excitadores/farmacología , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/fisiología , Ratones , Ratones Endogámicos C57BL , Plasticidad Neuronal/efectos de los fármacos , Técnicas de Cultivo de Órganos , Receptores AMPA/antagonistas & inhibidores , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Sinapsis/efectos de los fármacos , Tálamo/efectos de los fármacos , Factores de Tiempo
18.
J Neurosci ; 29(24): 7803-14, 2009 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-19535592

RESUMEN

Somatic spiking is known to regulate dendritic signaling and associative synaptic plasticity in many types of large neurons, but it is unclear whether somatic action potentials play similar roles in small neurons. Here we ask whether somatic action potentials can also influence dendritic signaling in an electrically compact neuron, the cerebellar stellate cell (SC). Experiments were conducted in rat brain slices using a combination of imaging and electrophysiology. We find that somatic action potentials elevate dendritic calcium levels in SCs. There was little attenuation of calcium signals with distance from the soma in SCs from postnatal day 17 (P17)-P19 rats, which had dendrites that averaged 60 microm in length, and in short SC dendrites from P30-P33 rats. Somatic action potentials evoke dendritic calcium increases that are not affected by blocking dendritic sodium channels. This indicates that dendritic signals in SCs do not rely on dendritic sodium channels, which differs from many types of large neurons, in which dendritic sodium channels and backpropagating action potentials allow somatic spikes to control dendritic calcium signaling. Despite the lack of active backpropagating action potentials, we find that trains of somatic action potentials elevate dendritic calcium sufficiently to release endocannabinoids and retrogradely suppress parallel fiber to SC synapses in P17-P19 rats. Prolonged SC firing at physiologically realistic frequencies produces retrograde suppression when combined with low-level group I metabotropic glutamate receptor activation. Somatic spiking also interacts with synaptic stimulation to promote associative plasticity. These findings indicate that in small neurons the passive spread of potential within dendrites can allow somatic spiking to regulate dendritic calcium signaling and synaptic plasticity.


Asunto(s)
Potenciales de Acción/fisiología , Dendritas/fisiología , Neuronas/citología , Neuronas/fisiología , Transducción de Señal/fisiología , Sinapsis/fisiología , Potenciales de Acción/efectos de los fármacos , Factores de Edad , Análisis de Varianza , Animales , Benzofuranos/metabolismo , Fenómenos Biofísicos , Calcio/metabolismo , Cerebelo/citología , Dendritas/efectos de los fármacos , Estimulación Eléctrica/métodos , Éteres Cíclicos/metabolismo , Antagonistas de Aminoácidos Excitadores/farmacología , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Técnicas In Vitro , Red Nerviosa/efectos de los fármacos , Red Nerviosa/fisiología , Neuronas/clasificación , Neuronas/efectos de los fármacos , Técnicas de Placa-Clamp/métodos , Piperidinas/farmacología , Pirazoles/farmacología , Quinoxalinas/farmacología , Ratas , Ratas Sprague-Dawley , Receptor Cannabinoide CB1/antagonistas & inhibidores , Receptor Cannabinoide CB1/fisiología , Receptores de Glutamato/fisiología , Transducción de Señal/efectos de los fármacos , Sodio/metabolismo , Bloqueadores de los Canales de Sodio/farmacología , Sinapsis/efectos de los fármacos , Tetrodotoxina/farmacología
19.
Neuron ; 54(6): 949-59, 2007 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-17582334

RESUMEN

Short-term synaptic plasticity influences how presynaptic spike patterns control the firing of postsynaptic targets. Here we investigated whether specific mechanisms of short-term plasticity are regulated in a target-dependent manner by comparing synapses made by cerebellar granule cell parallel fibers onto Golgi cells (PF-->GC synapse) and Purkinje cells (PF-->PC synapse). Both synapses exhibited similar facilitation, suggesting that any differential short-term plasticity does not reflect differences in the initial release probability. PF-->PC synapses were highly sensitive to stimulus bursts, which could result in either depression of subsequent responses, mediated by endocannabinoid-dependent retrograde signaling, or enhancement of responses through posttetanic potentiation (PTP). In contrast, stimulus bursts had remarkably little effect on the strength of PF-->GC synapses. Unlike PCs, GCs were unable to regulate their PF synapses by releasing endocannabinoids. Moreover, PTP was reduced at the PF-->GC synapse compared to the PF-->PC synapse. Thus, the target-dependence of PF synapses arises from the differential expression of both retrograde signaling and PTP.


Asunto(s)
Plasticidad Neuronal/fisiología , Neuronas/citología , Transducción de Señal/fisiología , Sinapsis/fisiología , Animales , Animales Recién Nacidos , Cerebelo/citología , Relación Dosis-Respuesta en la Radiación , Interacciones Farmacológicas , Estimulación Eléctrica/métodos , Inhibidores Enzimáticos/farmacología , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/fisiología , Potenciales Postsinápticos Excitadores/efectos de la radiación , Expresión Génica/efectos de los fármacos , Expresión Génica/fisiología , Expresión Génica/efectos de la radiación , Técnicas In Vitro , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas del Tejido Nervioso/deficiencia , Plasticidad Neuronal/efectos de los fármacos , Plasticidad Neuronal/efectos de la radiación , Neuronas/fisiología , Técnicas de Placa-Clamp/métodos , Piperidinas/farmacología , Probabilidad , Pirazoles/farmacología , Ratas , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos , Transducción de Señal/efectos de la radiación , Sinapsis/efectos de los fármacos , Sinapsis/efectos de la radiación
20.
J Neurosci ; 26(39): 9935-43, 2006 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-17005857

RESUMEN

Neurons release endocannabinoids from their dendrites to trigger changes in the probability of transmitter release. Although such retrograde signaling has been described for principal neurons, such as hippocampal pyramidal cells and cerebellar Purkinje cells (PCs), it has not been demonstrated for local interneurons. Here we tested whether inhibitory interneurons in the cerebellum, stellate cells (SCs) and basket cells, regulate the strength of parallel fiber (PF) synapses by releasing endocannabinoids. We found that depolarization-induced suppression of excitation (DSE) is present in both SCs and basket cells. The properties of retrograde inhibition were examined more thoroughly for SCs. Both DSE and synaptically evoked suppression of excitation (SSE) triggered with brief PF bursts require elevations of postsynaptic calcium, are blocked by a type 1 cannabinoid receptor (CB1R) antagonist, and are absent in mice lacking the CB1R. SSE for SCs is similar to that described previously for PCs in that it is prevented by BAPTA and DAG lipase inhibitors in the recording pipette; however, unlike in PCs, NMDA receptors (NMDARs) play an important role in SSE for SCs. Although SCs express CB1Rs postsynaptically, neither high-frequency firing of SCs nor PF bursts lead to autocrine suppression of subsequent SC activity. Instead, PF bursts decrease the amplitude of disynaptic inhibition in PCs by evoking endocannabinoid release that transiently reduces the ability of PF synapses to trigger spikes in SCs. Thus, local interneurons within the cerebellum can release endocannabinoids through metabotropic glutamate receptor- and NMDAR-dependent mechanisms and contribute to use-dependent modulation of circuit properties.


Asunto(s)
Moduladores de Receptores de Cannabinoides/metabolismo , Corteza Cerebelosa/citología , Endocannabinoides , Interneuronas/metabolismo , Sinapsis/fisiología , Transmisión Sináptica/fisiología , Potenciales de Acción , Animales , Cloruro de Calcio/farmacología , Señalización del Calcio , Ácido Egtácico/análogos & derivados , Ácido Egtácico/farmacología , Agonistas de Aminoácidos Excitadores/farmacología , Antagonistas de Aminoácidos Excitadores/farmacología , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/fisiología , Lipoproteína Lipasa/antagonistas & inhibidores , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Técnicas de Placa-Clamp , Piperidinas/farmacología , Pirazoles/farmacología , Ratas , Ratas Sprague-Dawley , Receptor Cannabinoide CB1/deficiencia , Receptor Cannabinoide CB1/fisiología , Receptores de Glutamato Metabotrópico/efectos de los fármacos , Receptores de Glutamato Metabotrópico/fisiología , Receptores de N-Metil-D-Aspartato/efectos de los fármacos , Receptores de N-Metil-D-Aspartato/fisiología , Transmisión Sináptica/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...