Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
RNA ; 30(7): 938-953, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38697668

RESUMEN

The functional analysis of epitranscriptomic modifications in RNA is constrained by a lack of methods that accurately capture their locations and levels. We previously demonstrated that the RNA modification N4-acetylcytidine (ac4C) can be mapped at base resolution through sodium borohydride reduction to tetrahydroacetylcytidine (tetrahydro-ac4C), followed by cDNA synthesis to misincorporate adenosine opposite reduced ac4C sites, culminating in C:T mismatches at acetylated cytidines (RedaC:T). However, this process is relatively inefficient, resulting in <20% C:T mismatches at a fully modified ac4C site in 18S rRNA. Considering that ac4C locations in other substrates including mRNA are unlikely to reach full penetrance, this method is not ideal for comprehensive mapping. Here, we introduce "RetraC:T" (reduction to tetrahydro-ac4C and reverse transcription with amino-dATP to induce C:T mismatches) as a method with enhanced ability to detect ac4C in cellular RNA. In brief, RNA is reduced through NaBH4 or the closely related reagent sodium cyanoborohydride (NaCNBH3) followed by cDNA synthesis in the presence of a modified DNA nucleotide, 2-amino-dATP, that preferentially binds to tetrahydro-ac4C. Incorporation of the modified dNTP substantially improved C:T mismatch rates, reaching stoichiometric detection of ac4C in 18S rRNA. Importantly, 2-amino-dATP did not result in truncated cDNA products nor increase mismatches at other locations. Thus, modified dNTPs are introduced as a new addition to the toolbox for detecting ac4C at base resolution.


Asunto(s)
Citidina , ADN Complementario , Citidina/análogos & derivados , Citidina/química , Citidina/metabolismo , Citidina/genética , ADN Complementario/genética , ARN/genética , ARN/química , ARN/metabolismo , Humanos , Borohidruros/química , Oxidación-Reducción , Transcripción Reversa , ARN Ribosómico 18S/genética , ARN Ribosómico 18S/metabolismo
2.
Gigascience ; 132024 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-38626724

RESUMEN

BACKGROUND: The accurate identification of the functional elements in the bovine genome is a fundamental requirement for high-quality analysis of data informing both genome biology and genomic selection. Functional annotation of the bovine genome was performed to identify a more complete catalog of transcript isoforms across bovine tissues. RESULTS: A total of 160,820 unique transcripts (50% protein coding) representing 34,882 unique genes (60% protein coding) were identified across tissues. Among them, 118,563 transcripts (73% of the total) were structurally validated by independent datasets (PacBio isoform sequencing data, Oxford Nanopore Technologies sequencing data, de novo assembled transcripts from RNA sequencing data) and comparison with Ensembl and NCBI gene sets. In addition, all transcripts were supported by extensive data from different technologies such as whole transcriptome termini site sequencing, RNA Annotation and Mapping of Promoters for the Analysis of Gene Expression, chromatin immunoprecipitation sequencing, and assay for transposase-accessible chromatin using sequencing. A large proportion of identified transcripts (69%) were unannotated, of which 86% were produced by annotated genes and 14% by unannotated genes. A median of two 5' untranslated regions were expressed per gene. Around 50% of protein-coding genes in each tissue were bifunctional and transcribed both coding and noncoding isoforms. Furthermore, we identified 3,744 genes that functioned as noncoding genes in fetal tissues but as protein-coding genes in adult tissues. Our new bovine genome annotation extended more than 11,000 annotated gene borders compared to Ensembl or NCBI annotations. The resulting bovine transcriptome was integrated with publicly available quantitative trait loci data to study tissue-tissue interconnection involved in different traits and construct the first bovine trait similarity network. CONCLUSIONS: These validated results show significant improvement over current bovine genome annotations.


Asunto(s)
Perfilación de la Expresión Génica , Genómica , Bovinos/genética , Animales , Análisis de Secuencia de ARN , Transcriptoma , Sitios de Carácter Cuantitativo , ARN , Isoformas de Proteínas , Anotación de Secuencia Molecular
3.
Mol Cell ; 84(8): 1611-1625.e3, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38640896

RESUMEN

We recently reported the distribution of N4-acetylcytidine (ac4C) in HeLa mRNA at base resolution through chemical reduction and the induction of C:T mismatches in sequencing (RedaC:T-seq). Our results contradicted an earlier report from Schwartz and colleagues utilizing a similar method termed ac4C-seq. Here, we revisit both datasets and reaffirm our findings. Through RedaC:T-seq reanalysis, we establish a low basal error rate at unmodified nucleotides that is not skewed to any specific mismatch type and a prominent increase in C:T substitutions as the dominant mismatch type in both treated wild-type replicates, with a high degree of reproducibility across replicates. In contrast, through ac4C-seq reanalysis, we uncover significant data quality issues including insufficient depth, with one wild-type replicate yielding 2.7 million reads, inconsistencies in reduction efficiencies between replicates, and an overall increase in mismatches involving thymine that could obscure ac4C detection. These analyses bolster the detection of ac4C in HeLa mRNA through RedaC:T-seq.


Asunto(s)
Citidina/análogos & derivados , Nucleótidos , Humanos , Reproducibilidad de los Resultados , ARN Mensajero/genética
4.
Mamm Genome ; 33(4): 629-641, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35840822

RESUMEN

Animal feeding is a critical factor in increasing producer profitability. Improving feed efficiency can help reduce feeding costs and reduce the environmental impact of beef production. Candidate genes previously identified for this trait in differential gene expression studies (e.g., case-control studies) have not examined continuous gene-phenotype variation, which is a limitation. The aim of this study was to investigate the association between the expression of five candidate genes in the liver, measured by quantitative real-time PCR and feed-related traits. We adopted a linear mixed model to associate liver gene expression from 52 Nelore steers with the following production traits: average daily gain (ADG), body weight (BW), dry matter intake (DMI), feed conversion ratio (FCR), feed efficiency (FE), Kleiber index (KI), metabolic body weight (MBW), residual feed intake (RFI), and relative growth ratio (RGR). The total expression of the prune homolog 2 (PRUNE2) gene was significantly associated with DMI, FCR, FE, and RFI (P < 0.05). Furthermore, we have identified a new transcript of PRUNE2 (TCONS_00027692, GenBank MZ041267) that was inversely correlated with FCR and FE (P < 0.05), in contrast to the originally identified PRUNE2 transcript. The cytochrome P450 subfamily 2B (CYP2B6), early growth response protein 1 (EGR1), collagen type I alpha 1 chain (COL1A1), and connective tissue growth factor (CTGF) genes were not associated with any feed efficiency-related traits (P > 0.05). The findings reported herein suggest that PRUNE2 expression levels affects feed efficiency-related traits variation in Nelore steers.


Asunto(s)
Alimentación Animal , Ingestión de Alimentos , Bovinos/genética , Animales , Ingestión de Alimentos/genética , Fenotipo , Alimentación Animal/análisis , Peso Corporal/genética , Expresión Génica
5.
BMC Genomics ; 22(1): 614, 2021 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-34384354

RESUMEN

BACKGROUND: Disease resilience, which is the ability of an animal to maintain performance under disease, is important for pigs in commercial herds, where they are exposed to various pathogens. Our objective was to investigate population-level gene expression profiles in the blood of 912 healthy F1 barrows at ~ 27 days of age for associations with performance and health before and after their exposure to a natural polymicrobial disease challenge at ~ 43 days of age. RESULTS: Most significant (q < 0.20) associations of the level of expression of individual genes in blood of young healthy pigs were identified for concurrent growth rate and subjective health scores prior to the challenge, and for mortality, a combined mortality-treatment trait, and feed conversion rate after the challenge. Gene set enrichment analyses revealed three groups of gene ontology biological process terms that were related to disease resilience: 1) immune and stress response-related terms were enriched among genes whose increased expression was unfavorably associated with both pre- and post-challenge traits, 2) heme-related terms were enriched among genes that had favorable associations with both pre- and post-challenge traits, and 3) terms related to protein localization and viral gene expression were enriched among genes that were associated with reduced performance and health traits after but not before the challenge. CONCLUSIONS: Gene expression profiles in blood from young healthy piglets provide insight into their performance when exposed to disease and other stressors. The expression of genes involved in stress response, heme metabolism, and baseline expression of host genes related to virus propagation were found to be associated with host response to disease.


Asunto(s)
Inmunidad , Transcriptoma , Animales , Ontología de Genes , Fenotipo , Porcinos
6.
BMC Vet Res ; 17(1): 88, 2021 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-33618723

RESUMEN

BACKGROUND: Porcine reproductive and respiratory syndrome (PRRS) is a threat to pig production worldwide. Our objective was to understand mechanisms of persistence of PRRS virus (PRRSV) in tonsil. Transcriptome data from tonsil samples collected at 42 days post infection (dpi) were generated by RNA-seq and NanoString on 51 pigs that were selected to contrast the two PRRSV isolates used, NVSL and KS06, high and low tonsil viral level at 42 dpi, and the favorable and unfavorable genotypes at a genetic marker (WUR) for the putative PRRSV resistance gene GBP5. RESULTS: The number of differentially expressed genes (DEGs) differed markedly between models with and without accounting for cell-type enrichments (CE) in the samples that were predicted from the RNA-seq data. This indicates that differences in cell composition in tissues that consist of multiple cell types, such as tonsil, can have a large impact on observed differences in gene expression. Based on both the NanoString and the RNA-seq data, KS06-infected pigs showed greater activation, or less inhibition, of immune response in tonsils at 42 dpi than NVSL-infected pigs, with and without accounting for CE. This suggests that the NVSL virus may be better than the KS06 virus at evading host immune response and persists in tonsils by weakening, or preventing, host immune responses. Pigs with high viral levels showed larger CE of immune cells than low viral level pigs, potentially to trigger stronger immune responses. Presence of high tonsil virus was associated with a stronger immune response, especially innate immune response through interferon signaling, but these differences were not significant when accounting for CE. Genotype at WUR was associated with different effects on immune response in tonsils of pigs during the persistence stage, depending on viral isolate and tonsil viral level. CONCLUSIONS: Results of this study provide insights into the effects of PRRSV isolate, tonsil viral level, and WUR genotype on host immune response and into potential mechanisms of PRRSV persistence in tonsils that could be targeted to improve strategies to reduce viral rebreaks. Finally, to understand transcriptome responses in tissues that consist of multiple cell types, it is important to consider differences in cell composition.


Asunto(s)
Tonsila Palatina/inmunología , Síndrome Respiratorio y de la Reproducción Porcina/inmunología , Virus del Síndrome Respiratorio y Reproductivo Porcino/clasificación , Animales , Genotipo , Inmunidad Innata/genética , Tonsila Palatina/citología , Tonsila Palatina/metabolismo , Tonsila Palatina/virología , Virus del Síndrome Respiratorio y Reproductivo Porcino/inmunología , Virus del Síndrome Respiratorio y Reproductivo Porcino/aislamiento & purificación , Sus scrofa , Porcinos , Transcriptoma , Carga Viral/veterinaria , Viremia/veterinaria , Viremia/virología
7.
Gigascience ; 9(6)2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32543654

RESUMEN

BACKGROUND: The domestic pig (Sus scrofa) is important both as a food source and as a biomedical model given its similarity in size, anatomy, physiology, metabolism, pathology, and pharmacology to humans. The draft reference genome (Sscrofa10.2) of a purebred Duroc female pig established using older clone-based sequencing methods was incomplete, and unresolved redundancies, short-range order and orientation errors, and associated misassembled genes limited its utility. RESULTS: We present 2 annotated highly contiguous chromosome-level genome assemblies created with more recent long-read technologies and a whole-genome shotgun strategy, 1 for the same Duroc female (Sscrofa11.1) and 1 for an outbred, composite-breed male (USMARCv1.0). Both assemblies are of substantially higher (>90-fold) continuity and accuracy than Sscrofa10.2. CONCLUSIONS: These highly contiguous assemblies plus annotation of a further 11 short-read assemblies provide an unprecedented view of the genetic make-up of this important agricultural and biomedical model species. We propose that the improved Duroc assembly (Sscrofa11.1) become the reference genome for genomic research in pigs.


Asunto(s)
Biología Computacional/métodos , Genoma , Genómica/métodos , Análisis de Secuencia de ADN/métodos , Sus scrofa/inmunología , Animales , Anotación de Secuencia Molecular , Reproducibilidad de los Resultados , Investigación , Porcinos
8.
BMC Genomics ; 19(1): 499, 2018 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-29945546

RESUMEN

BACKGROUND: Integration of high throughput DNA genotyping and RNA-sequencing data allows for the identification of genomic regions that control gene expression, known as expression quantitative trait loci (eQTL), on a whole genome scale. Intramuscular fat (IMF) content and carcass composition play important roles in metabolic and physiological processes in mammals because they influence insulin sensitivity and consequently prevalence of metabolic diseases such as obesity and type 2 diabetes. However, limited information is available on the genetic variants and mechanisms associated with IMF deposition in mammals. Thus, our hypothesis was that eQTL analyses could identify putative regulatory regions and transcription factors (TFs) associated with intramuscular fat (IMF) content traits. RESULTS: We performed an integrative eQTL study in skeletal muscle to identify putative regulatory regions and factors associated with intramuscular fat content traits. Data obtained from skeletal muscle samples of 192 animals was used for association analysis between 461,466 SNPs and the transcription level of 11,808 genes. This yielded 1268 cis- and 10,334 trans-eQTLs, among which we identified nine hotspot regions that each affected the expression of > 119 genes. These putative regulatory regions overlapped with previously identified QTLs for IMF content. Three of the hotspots respectively harbored the transcription factors USF1, EGR4 and RUNX1T1, which are known to play important roles in lipid metabolism. From co-expression network analysis, we further identified modules significantly correlated with IMF content and associated with relevant processes such as fatty acid metabolism, carbohydrate metabolism and lipid metabolism. CONCLUSION: This study provides novel insights into the link between genotype and IMF content as evident from the expression level. It thereby identifies genomic regions of particular importance and associated regulatory factors. These new findings provide new knowledge about the biological processes associated with genetic variants and mechanisms associated with IMF deposition in mammals.


Asunto(s)
Sitios de Carácter Cuantitativo/genética , Factores de Transcripción/metabolismo , Animales , Metabolismo de los Hidratos de Carbono/genética , Metabolismo de los Hidratos de Carbono/fisiología , Ácidos Grasos/metabolismo , Perfilación de la Expresión Génica/métodos , Regulación de la Expresión Génica/genética , Regulación de la Expresión Génica/fisiología , Metabolismo de los Lípidos/genética , Metabolismo de los Lípidos/fisiología , Enfermedades Metabólicas/genética , Enfermedades Metabólicas/metabolismo , Factores de Transcripción/genética
9.
Genome Biol ; 19(1): 48, 2018 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-29636098

RESUMEN

A report on the International Plant and Animal Genomes (PAG) conference held in San Diego, USA, 13-17 January 2018.


Asunto(s)
Productos Agrícolas/genética , Genómica/tendencias , Animales , Vertebrados/genética
10.
BMC Immunol ; 19(1): 2, 2018 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-29301495

RESUMEN

BACKGROUND: Weighted Gene Co-expression Network analysis, a powerful technique used to extract co-expressed gene pattern from mRNA expression data, was constructed to infer common immune strategies used by cattle in response to five different bacterial species (Escherichia coli, Mycobacterium avium, Mycobacterium bovis, Salmonella and Staphylococcus aureus) and a protozoa (Trypanosoma Congolense) using 604 publicly available gene expression microarrays from 12 cattle infection experiments. RESULTS: A total of 14,999 transcripts that were differentially expressed (DE) in at least three different infection experiments were consolidated into 15 modules that contained between 43 and 4441 transcripts. The high number of shared DE transcripts between the different types of infections indicated that there were potentially common immune strategies used in response to these infections. The number of transcripts in the identified modules varied in response to different infections. Fourteen modules showed a strong functional enrichment for specific GO/pathway terms related to "immune system process" (71%), "metabolic process" (71%), "growth and developmental process" (64%) and "signaling pathways" (50%), which demonstrated the close interconnection between these biological pathways in response to different infections. The largest module in the network had several over-represented GO/pathway terms related to different aspects of lipid metabolism and genes in this module were down-regulated for the most part during various infections. Significant negative correlations between this module's eigengene values, three immune related modules in the network, and close interconnection between their hub genes, might indicate the potential co-regulation of these modules during different infections in bovine. In addition, the potential function of 93 genes with no functional annotation was inferred based on neighbor analysis and functional uniformity among associated genes. Several hypothetical genes were differentially expressed during experimental infections, which might indicate their important role in cattle response to different infections. CONCLUSIONS: We identified several biological pathways involved in immune response to different infections in cattle. These findings provide rich information for experimental biologists to design experiments, interpret experimental results, and develop novel hypothesis on immune response to different infections in cattle.


Asunto(s)
Enfermedades de los Bovinos/genética , Perfilación de la Expresión Génica , Redes Reguladoras de Genes , Transducción de Señal/genética , Animales , Bovinos , Enfermedades de los Bovinos/microbiología , Enfermedades de los Bovinos/parasitología , Escherichia coli/fisiología , Ontología de Genes , Interacciones Huésped-Patógeno , Mycobacterium avium/fisiología , Mycobacterium bovis/fisiología , Salmonella/fisiología , Especificidad de la Especie , Staphylococcus aureus/fisiología , Trypanosoma congolense/fisiología
11.
BMC Genomics ; 17(1): 846, 2016 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-27806696

RESUMEN

BACKGROUND: Genome sequencing and subsequent gene annotation of genomes has led to the elucidation of many genes, but in vertebrates the actual number of protein coding genes are very consistent across species (~20,000). Seven years after sequencing the cattle genome, there are still genes that have limited annotation and the function of many genes are still not understood, or partly understood at best. Based on the assumption that genes with similar patterns of expression across a vast array of tissues and experimental conditions are likely to encode proteins with related functions or participate within a given pathway, we constructed a genome-wide Cattle Gene Co-expression Network (CGCN) using 72 microarray datasets that contained a total of 1470 Affymetrix Genechip Bovine Genome Arrays that were retrieved from either NCBI GEO or EBI ArrayExpress. RESULTS: The total of 16,607 probe sets, which represented 11,397 genes, with unique Entrez ID were consolidated into 32 co-expression modules that contained between 29 and 2569 probe sets. All of the identified modules showed strong functional enrichment for gene ontology (GO) terms and Reactome pathways. For example, modules with important biological functions such as response to virus, response to bacteria, energy metabolism, cell signaling and cell cycle have been identified. Moreover, gene co-expression networks using "guilt-by-association" principle have been used to predict the potential function of 132 genes with no functional annotation. Four unknown Hub genes were identified in modules highly enriched for GO terms related to leukocyte activation (LOC509513), RNA processing (LOC100848208), nucleic acid metabolic process (LOC100850151) and organic-acid metabolic process (MGC137211). Such highly connected genes should be investigated more closely as they likely to have key regulatory roles. CONCLUSIONS: We have demonstrated that the CGCN and its corresponding regulons provides rich information for experimental biologists to design experiments, interpret experimental results, and develop novel hypothesis on gene function in this poorly annotated genome. The network is publicly accessible at http://www.animalgenome.org/cgi-bin/host/reecylab/d .


Asunto(s)
Biología Computacional/métodos , Perfilación de la Expresión Génica , Expresión Génica , Redes Reguladoras de Genes , Animales , Bovinos , Análisis por Conglomerados , Ontología de Genes , Genómica/métodos , Anotación de Secuencia Molecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...