Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Sci Adv ; 9(41): eadk3986, 2023 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-37824615

RESUMEN

The mammalian brain is composed of many brain structures, each with its own ontogenetic and developmental history. We used single-nucleus RNA sequencing to sample over 2.4 million brain cells across 18 locations in the common marmoset, a New World monkey primed for genetic engineering, and examined gene expression patterns of cell types within and across brain structures. The adult transcriptomic identity of most neuronal types is shaped more by developmental origin than by neurotransmitter signaling repertoire. Quantitative mapping of GABAergic types with single-molecule FISH (smFISH) reveals that interneurons in the striatum and neocortex follow distinct spatial principles, and that lateral prefrontal and other higher-order cortical association areas are distinguished by high proportions of VIP+ neurons. We use cell type-specific enhancers to drive AAV-GFP and reconstruct the morphologies of molecularly resolved interneuron types in neocortex and striatum. Our analyses highlight how lineage, local context, and functional class contribute to the transcriptional identity and biodistribution of primate brain cell types.


Asunto(s)
Callithrix , Neocórtex , Animales , Neocórtex/fisiología , Neuronas/fisiología , Distribución Tisular
2.
Neuron ; 106(1): 76-89.e8, 2020 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-32004439

RESUMEN

Unbiased in vivo genome-wide genetic screening is a powerful approach to elucidate new molecular mechanisms, but such screening has not been possible to perform in the mammalian central nervous system (CNS). Here, we report the results of the first genome-wide genetic screens in the CNS using both short hairpin RNA (shRNA) and CRISPR libraries. Our screens identify many classes of CNS neuronal essential genes and demonstrate that CNS neurons are particularly sensitive not only to perturbations to synaptic processes but also autophagy, proteostasis, mRNA processing, and mitochondrial function. These results reveal a molecular logic for the common implication of these pathways across multiple neurodegenerative diseases. To further identify disease-relevant genetic modifiers, we applied our screening approach to two mouse models of Huntington's disease (HD). Top mutant huntingtin toxicity modifier genes included several Nme genes and several genes involved in methylation-dependent chromatin silencing and dopamine signaling, results that reveal new HD therapeutic target pathways.


Asunto(s)
Supervivencia Celular/genética , Proteína Huntingtina/genética , Enfermedad de Huntington/genética , Neostriado/metabolismo , Neuronas/metabolismo , Animales , Conducta Animal , Sistemas CRISPR-Cas , Técnicas de Silenciamiento del Gen , Biblioteca de Genes , Genes Esenciales/genética , Ratones , Ratones Transgénicos , Nucleósido Difosfato Quinasas NM23/genética , Nucleósido Difosfato Quinasa D/genética , Agregado de Proteínas , Interferencia de ARN , ARN Guía de Kinetoplastida , ARN Interferente Pequeño , Receptores de Dopamina D2/genética , Análisis de Secuencia de ARN
3.
Science ; 352(6286): 712-716, 2016 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-27033548

RESUMEN

Synapse loss in Alzheimer's disease (AD) correlates with cognitive decline. Involvement of microglia and complement in AD has been attributed to neuroinflammation, prominent late in disease. Here we show in mouse models that complement and microglia mediate synaptic loss early in AD. C1q, the initiating protein of the classical complement cascade, is increased and associated with synapses before overt plaque deposition. Inhibition of C1q, C3, or the microglial complement receptor CR3 reduces the number of phagocytic microglia, as well as the extent of early synapse loss. C1q is necessary for the toxic effects of soluble ß-amyloid (Aß) oligomers on synapses and hippocampal long-term potentiation. Finally, microglia in adult brains engulf synaptic material in a CR3-dependent process when exposed to soluble Aß oligomers. Together, these findings suggest that the complement-dependent pathway and microglia that prune excess synapses in development are inappropriately activated and mediate synapse loss in AD.


Asunto(s)
Enfermedad de Alzheimer/inmunología , Enfermedad de Alzheimer/patología , Complemento C1q/inmunología , Microglía/inmunología , Fagocitosis/inmunología , Sinapsis/inmunología , Sinapsis/patología , Péptidos beta-Amiloides/inmunología , Animales , Región CA1 Hipocampal/inmunología , Región CA1 Hipocampal/patología , Región CA1 Hipocampal/fisiopatología , Trastornos del Conocimiento/inmunología , Trastornos del Conocimiento/patología , Complemento C1q/genética , Vía Clásica del Complemento/inmunología , Modelos Animales de Enfermedad , Homólogo 4 de la Proteína Discs Large , Guanilato-Quinasas/inmunología , Potenciación a Largo Plazo , Antígeno de Macrófago-1/genética , Antígeno de Macrófago-1/inmunología , Proteínas de la Membrana/inmunología , Ratones , Ratones Noqueados , Placa Amiloide/inmunología , Sinaptofisina/inmunología , Regulación hacia Arriba
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA