Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Mycologia ; 116(1): 1-16, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38133903

RESUMEN

This study explored a heathland region in Portugal, and through morphology, biogeography, and multilocus phylogeny, two new species of Inocybaceae are described. The first species, Inocybe iberilepora, belongs to "I. flocculosa group," whereas the second species, Inocybe phaeosquamosa, belongs to a relatively isolated and understudied clade, distantly related to I. furfurea and allies. Both species are tied to a west Mediterranean distribution and ecology, associating with the local Cistaceae ecosystems. By characterizing these new species, our research contributes to the understanding of European Funga and enriches the knowledge of the genus Inocybe on a global scale.


Asunto(s)
Agaricales , Cistaceae , Ecosistema , Filogenia , Portugal
2.
Microbiol Spectr ; : e0242023, 2023 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-37768070

RESUMEN

Tuberculosis (TB) originating from expatriates that hail from high TB-burden countries is hypothesized to play a role in continued TB transmission in Oman. Here, we used whole-genome sequencing (WGS) to assess national TB transmission dynamics. The annual incidence per 100,000 population per year was calculated for nationals and expatriates. A convenience sample of Mycobacterium tuberculosis (MTB) isolates from 2018 to 2019 was sequenced and analyzed with publicly available TB sequences from Bangladesh, Tanzania, the Philippines, India, and Pakistan. Relatedness was assessed by generating core-genome single nucleotide polymorphism (SNP) distances. The incidence of TB was five cases per 100,000 persons in 2018 and seven cases per 100,000 persons in 2020 (R2 = 0.34, P = 0.60). Incidence among nationals was 3.9 per 100,000 persons in 2018 and 3.5 per 100,000 persons in 2020 (R2 = 0.20, P = 0.70), and incidence among expatriates was 7.2 per 100,000 persons in 2018 and 12.7 per 100,000 persons in 2020 (R2 = 0.74, P = 0.34). Sixty-eight local MTB isolates were sequenced and analyzed with 393 global isolates. Isolates belonged to nine distinct spoligotypes. Two isolates, originating from an expatriate and an Omani national, were grouped into a WGS-based cluster (SNP distance < 12), which was corroborated by an epidemiological investigation. Relatedness of local and global isolates (SNP distance < 100) was also seen. The relatedness between MTB strains in Oman and those in expatriate countries of origin can aid inform TB control policy. Our results provide evidence that WGS can complement epidemiological analysis to achieve the End TB strategy goal in Oman. IMPORTANCE Tuberculosis (TB) incidence in Oman remains above national program control targets. TB transmission originating from expatriates from high TB-burden countries has been hypothesized to play a role. We used whole-genome sequencing (WGS) to assess TB transmission dynamics between expatriates and Omani nationals to inform TB control efforts. Available Mycobacterium tuberculosis isolates from 2018 to 2019 underwent WGS and analysis with publicly available TB sequences from Bangladesh, the Philippines, India, and Pakistan to assess for genetic relatedness. Our analysis revealed evidence of previously unrecognized transmission between an expatriate and an Omani national, which was corroborated by epidemiological investigation. Analysis of local and global isolates revealed evidence of distant relatedness between local and global isolates. Our results provide evidence that WGS can complement classic public health surveillance to inform targeted interventions to achieve the End TB strategy goal in Oman.

3.
Food Res Int ; 163: 112259, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36596171

RESUMEN

Taste plays a paramount role in food and beverage choice, with recent studies pointing to a potential influence of the microorganisms from the tongue dorsum - particularly bacteria - on flavor perception. Thus, the association between tongue dorsum biofilm and taste is a fundamental prerequisite for a better understanding of the role played by these bacteria in wine tasting. To study this impact, we have analyzed the microbiomes from 58 samples of the tongue dorsum surface from professional wine tasters and 30 samples from non professional wine tasters. The microbiome of each sample was characterized through metagenome sequencing of the 16S rRNA gene for taxonomic discrimination of bacteria. A total of 497 taxa were identified in the tongue dorsum, and significant differences in diversity were observed between the wine taster and the control group. The comparison of bacterial diversity between samples collected before and after wine tasting along with the presence of new bacterial taxa indicates a direct effect of wine on the microbiome of frequent wine tasters, particularly in those tasting sparkling wines.


Asunto(s)
Microbiota , Vino , Vino/análisis , ARN Ribosómico 16S/genética , Gusto , Lengua , Microbiota/genética
4.
Animals (Basel) ; 12(23)2022 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-36496896

RESUMEN

The variety and makeup of the gut microbiome are frequently regarded as the primary determinants of health and production performances in domestic animals. High-throughput DNA/RNA sequencing techniques (NGS) have recently gained popularity and permitted previously unheard-of advancements in the study of gut microbiota, particularly for determining the taxonomic composition of such complex communities. Here, we summarize the existing body of knowledge on livestock gut microbiome, discuss the state-of-the-art in sequencing techniques, and offer predictions for next research. We found that the enormous volumes of available data are biased toward a small number of globally distributed and carefully chosen varieties, while local breeds (or populations) are frequently overlooked despite their demonstrated resistance to harsh environmental circumstances. Furthermore, the bulk of this research has mostly focused on bacteria, whereas other microbial components such as protists, fungi, and viruses have received far less attention. The majority of these data were gathered utilizing traditional metabarcoding techniques that taxonomically identify the gut microbiota by analyzing small portions of their genome (less than 1000 base pairs). However, to extend the coverage of microbial genomes for a more precise and thorough characterization of microbial communities, a variety of increasingly practical and economical shotgun techniques are currently available.

5.
Science ; 377(6611): 1172-1180, 2022 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-36074859

RESUMEN

Donkeys transformed human history as essential beasts of burden for long-distance movement, especially across semi-arid and upland environments. They remain insufficiently studied despite globally expanding and providing key support to low- to middle-income communities. To elucidate their domestication history, we constructed a comprehensive genome panel of 207 modern and 31 ancient donkeys, as well as 15 wild equids. We found a strong phylogeographic structure in modern donkeys that supports a single domestication in Africa ~5000 BCE, followed by further expansions in this continent and Eurasia and ultimately returning to Africa. We uncover a previously unknown genetic lineage in the Levant ~200 BCE, which contributed increasing ancestry toward Asia. Donkey management involved inbreeding and the production of giant bloodlines at a time when mules were essential to the Roman economy and military.


Asunto(s)
Domesticación , Equidae , Genoma , África , Animales , Asia , Equidae/clasificación , Equidae/genética , Genómica , Humanos , Filogenia
6.
Front Genet ; 13: 847492, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35711941

RESUMEN

It is known that throughout history and presently, taurine (Bos taurus) and indicine/zebu (Bos indicus) cattle were crossed with other bovine species (e.g., gayal, gaur, banteng, yak, wisent, and bison). Information on the role of interspecific hybridization to facilitate faster adaptation of the newly arrived domestic species to new environments is poorly known. Herein, we collected 266 samples of bovine species of the taurine, zebu, yak, and gaur from West Europe, Southwest China, Indian subcontinent, and Southeast Asia to conduct the principal component analysis (PCA), admixture, gene flow, and selection signature analyses by using SNPs distributed across the bovine autosomes. The results showed that the genetic relationships between the zebu, yak, and gaur mirrored their geographical origins. Three ancestral components of the European taurine, East Asian taurine, and Indian zebu were found in domestic cattle, and the bidirectional genetic introgression between the Diqing cattle and Zhongdian yak was also detected. Simultaneously, the introgressed genes from the Zhongdian yak to the Diqing cattle were mainly enriched with immune-related pathways, and the ENPEP, FLT1, and PIK3CA genes related to the adaptation of high-altitude hypoxia were detected. Additionally, we found the genetic components of the Zhongdian yak had introgressed into Tibetan cattle. The 30 selected genes were detected in Tibetan cattle, which were significantly enriched in the chemokine signaling pathway. Interestingly, some genes (CDC42, SLC39A2, and EPAS1) associated with hypoxia response were discovered, in which CDC42 and SLC39A2 played important roles in angiogenesis and erythropoiesis, and heart function, respectively. This result showed that genetic introgression was one of the important ways for the environmental adaptation of domestic cattle.

7.
Pathogens ; 11(3)2022 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-35335658

RESUMEN

BACKGROUND: Theileria annulata is a tick-borne protozoan parasite responsible for bovine theileriosis, a disease that impacts cattle population in many developing countries. Development and deployment of effective control strategies, based on vaccine or therapy, should consider the extent of diversity of the parasite and its population structure in different endemic areas. In this study, we examined T. annulata in Pakistan and carried out a comparative analysis with similar data garneted in other areas, to provide further information on the level of parasite diversity and parasite genetic structure in different endemic areas. METHODS: The present study examined a set of 10 microsatellites/minisatellites and analyzed the genetic structure of T. annulata in cattle breeds from Pakistan (Indian sub-continent) and compared these with those in Oman (Middle East), Tunisia (Africa), and Turkey (Europe). RESULT: A high level of genetic diversity was observed among T. annulata detected in cattle from Pakistan, comparable to that in Oman, Tunisia, and Turkey. The genotypes of T. annulata in these four countries form genetically distinct groups that are geographically sub-structured. The T. annulata population in Oman overlapped with that in the Indian Subcontinent (Pakistan) and that in Africa (Tunisia). CONCLUSIONS: The T. annulata parasite in Pakistan is highly diverse, and genetically differentiated. This pattern accords well and complements that seen among T. annulata representing the global endemic site. The parasite population in the Arabian Peninsula overlapped with that in the Indian-Subcontinent (India) and that in Africa (Tunisia), which shared some genotypes with that in the Near East and Europe (Turkey). This suggests some level of parasite gene flow, indicative of limited movement between neighboring countries.

8.
Sci Adv ; 7(47): eabi8584, 2021 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-34797710

RESUMEN

Grapevine (Vitis vinifera L.) diversity richness results from a complex domestication history over multiple historical periods. Here, we used whole-genome resequencing to elucidate different aspects of its recent evolutionary history. Our results support a model in which a central domestication event in grapevine was followed by postdomestication hybridization with local wild genotypes, leading to the presence of an introgression signature in modern wine varieties across Western Europe. The strongest signal was associated with a subset of Iberian grapevine varieties showing large introgression tracts. We targeted this study group for further analysis, demonstrating how regions under selection in wild populations from the Iberian Peninsula were preferentially passed on to the cultivated varieties by gene flow. Examination of underlying genes suggests that environmental adaptation played a fundamental role in both the evolution of wild genotypes and the outcome of hybridization with cultivated varieties, supporting a case of adaptive introgression in grapevine.

9.
J Hered ; 112(4): 313-327, 2021 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-33860294

RESUMEN

A current challenge in the fields of evolutionary, ecological, and conservation genomics is balancing production of large-scale datasets with additional training often required to handle such datasets. Thus, there is an increasing need for conservation geneticists to continually learn and train to stay up-to-date through avenues such as symposia, meetings, and workshops. The ConGen meeting is a near-annual workshop that strives to guide participants in understanding population genetics principles, study design, data processing, analysis, interpretation, and applications to real-world conservation issues. Each year of ConGen gathers a diverse set of instructors, students, and resulting lectures, hands-on sessions, and discussions. Here, we summarize key lessons learned from the 2019 meeting and more recent updates to the field with a focus on big data in conservation genomics. First, we highlight classical and contemporary issues in study design that are especially relevant to working with big datasets, including the intricacies of data filtering. We next emphasize the importance of building analytical skills and simulating data, and how these skills have applications within and outside of conservation genetics careers. We also highlight recent technological advances and novel applications to conservation of wild populations. Finally, we provide data and recommendations to support ongoing efforts by ConGen organizers and instructors-and beyond-to increase participation of underrepresented minorities in conservation and eco-evolutionary sciences. The future success of conservation genetics requires both continual training in handling big data and a diverse group of people and approaches to tackle key issues, including the global biodiversity-loss crisis.


Asunto(s)
Macrodatos , Conservación de los Recursos Naturales , Evolución Biológica , Genética de Población , Genómica , Humanos
10.
Front Microbiol ; 12: 610370, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33613481

RESUMEN

Type 2 diabetes mellitus (T2DM) is a chronic metabolic disease that is becoming a significant global health care problem. Several studies have shown that people with diabetes are more susceptible to oral problems, such as periodontitis and, although the causes are still inconclusive, oral microbiota is considered to play a major role in oral health. This study aimed to characterize the oral microbiome of a sample representing T2DM patients from Portugal and exploit potential associations between some microorganisms and variables like teeth brushing, smoking habits, average blood sugar levels, medication and nutrient intake. By sequencing the hypervariable regions V3-V4 of the 16S rRNA gene in 50 individuals belonging to a group of diabetes patients and a control group, we found a total of 232 taxa, from which only 65% were shared between both groups. No differences were found in terms of alpha and beta diversity between categories. We did not find significant differences in the oral microbiome profiles of control and diabetes patients. Only the class Synergistia and the genus TG5, which are related to periodontitis, were statistically more frequent in the control group. The similar microbiome profiles of medicated diabetics and the control group indicates that the relationship between the T2DM and the oral microbiome might be more related to either the lifestyle/diet rather than diabetes per se. Moreover, this study provides, for the first time, insights into the oral microbiome of a population with a high prevalence of diabetes.

11.
Genes (Basel) ; 12(2)2021 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-33503948

RESUMEN

Matrilineal genetic diversity and relationship were investigated among eight morphologically identified native Ethiopian horse populations using polymorphisms in 46 mtDNA D-loop sequences (454 base pairs). The horse populations identified were Abyssinian, Bale, Borana, Horro, Kafa, Kundido feral horses, Ogaden and Selale. Mitochondrial DNA D-loop sequences were characterized by 15 variable sites that defined five different haplotypes. All genetic diversity estimates, including Reynolds' linearized genetic distance, genetic differentiation (FST) and nucleotide sequence divergence (DA), revealed a low genetic differentiation in native Ethiopian horse populations. However, Kundido feral and Borana domestic horses were slightly diverged from the rest of the Ethiopian horse populations. We also tried to shed some light on the matrilineal genetic root of native Ethiopian horses from a network constructed by combining newly generated haplotypes and reference haplotypes deposited in the GenBank for Eurasian type Turkish Anatolian horses that were used as a genetic conduit between Eurasian and African horse populations. Ninety-two haplotypes were generated from the combined Ethio-Eurasian mtDNA D-loop sequences. A network reconstructed from the combined haplotypes using Median-Joining algorithm showed that haplotypes generated from native Ethiopian horses formed separate clusters. The present result encourages further investigation of the genetic origin of native African horses by retrieving additional mtDNA sequences deposited in the GenBank for African and Eurasian type horses.


Asunto(s)
ADN Mitocondrial , Variación Genética , Genética de Población , Caballos/clasificación , Caballos/genética , Polimorfismo Genético , Animales , Etiopía , Femenino , Ligamiento Genético , Haplotipos , Masculino , Filogenia , Filogeografía , Análisis de Secuencia de ADN
12.
Front Genet ; 10: 1172, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31803242

RESUMEN

Chicken have a considerable impact in South American rural household economy as a source of animal protein (eggs and meat) and a major role in cultural traditions (e.g., cockfighting, religious ceremonies, folklore). A large number of phenotypes and its heterogeneity are due to the multitude of environments (from arid to tropical rain forest and high altitude) and agricultural systems (highly industrialized to subsistence agriculture). This heterogeneity also represents the successive introduction of domestic chicken into this continent, which some consider predating Columbus' arrival to South America. In this study, we have used next-generation restriction site-associated DNA sequencing to scan for genome-wide variation across 145 South American chickens representing local populations from six countries of South America (Colombia, Brazil, Ecuador, Peru, Bolivia, and Chile). After quality control, the genotypes of 122,801 single nucleotide polymorphisms (SNPs) were used to assess the genomic diversity and interpopulation genetic relationship between those populations and their potential sources. The estimated population genetic diversity displayed that the gamefowl has the least diverse population (θπ = 0.86; θS = 0.70). This population is also the most divergent (F ST = 0.11) among the South American populations. The allele-sharing analysis and the admixture analysis revealed that the current diversity displayed by these populations resulted from multiple admixture events with a strong influence of the modern commercial egg-layer chicken (ranging between 44% and 79%). It also revealed an unknown genetic component that is mostly present in the Easter Island population that is also present in local chicken populations from the South American Pacific fringe.

13.
Sci Rep ; 8(1): 18027, 2018 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-30575786

RESUMEN

All tropically adapted humped cattle (Bos indicus or "zebu"), descend from a domestication process that took place >8,000 years ago in South Asia. Here we present an intercontinental survey of Y-chromosome diversity and a comprehensive reconstruction of male-lineage zebu cattle history and diversity patterns. Phylogenetic analysis revealed that all the zebu Y-chromosome haplotypes in our dataset group within three different lineages: Y3A, the most predominant and cosmopolitan lineage; Y3B, only observed in West Africa; and Y3C, predominant in South and Northeast India. The divergence times estimated for these three Zebu-specific lineages predate domestication. Coalescent demographic models support either de novo domestication of genetically divergent paternal lineages or more complex process including gene flow between wild and domestic animals. Our data suggest export of varied zebu lineages from domestication centres through time. The almost exclusive presence of Y3A haplotypes in East Africa is consistent with recent cattle restocking in this area. The cryptic presence of Y3B haplotypes in West Africa, found nowhere else, suggests that these haplotypes might represent the oldest zebu lineage introduced to Africa ca. 3,000 B.P. and subsequently replaced in most of the world. The informative ability of Interspersed Multilocus Microsatellites and Y-specific microsatellites to identify genetic structuring in cattle populations is confirmed.


Asunto(s)
Agricultura , Migración Animal/fisiología , Bovinos/genética , Comercio , Domesticación , Variación Genética/fisiología , África/epidemiología , Agricultura/estadística & datos numéricos , Animales , Animales Domésticos , Asia/epidemiología , Bovinos/clasificación , Comercio/estadística & datos numéricos , Granjas/estadística & datos numéricos , Haplotipos , Masculino , Repeticiones de Microsatélite/genética , Filogenia , Dinámica Poblacional , Cromosoma Y/genética
14.
PLoS One ; 12(12): e0190235, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29281717

RESUMEN

The Sultanate of Oman has a complex mosaic of livestock species and production systems, but the genetic diversity, demographic history or origins of these Omani animals has not been expensively studied. Goats might constitute one of the most abundant and important domestic livestock species since the Neolithic transition. Here, we examined the genetic diversity, origin, population structure and demographic history of Omani goats. Specifically, we analyzed a 525-bp fragment of the first hypervariable region of the mitochondrial DNA (mtDNA) control region from 69 Omani individuals and compared this fragment with 17 mtDNA sequences from Somalia and Yemen as well as 18 wild goat species and 1,198 previously published goat sequences from neighboring countries. The studied goat breeds show substantial diversity. The haplotype and nucleotide diversities of Omani goats were found equal to 0.983 ± 0.006 and 0.0284 ± 0.014, respectively. The phylogenetic analyses allowed us to classify Omani goats into three mtDNA haplogroups (A, B and G): haplogroup A was found to be predominant and widely distributed and accounted for 80% of all samples, and haplogroups B and G exhibited low frequencies. Phylogenetic comparisons with wild goats revealed that five of the native Omani goat populations originate from Capra aegagrus. Furthermore, most comparisons of pairwise population FST values within and between these five Omani goat breeds as well as between Omani goats and nine populations from nearby countries were not significant. These results suggest strong gene flow among goat populations caused by the extensive transport of goats and the frequent movements of human populations in ancient Arabia. The findings improve our understanding of the migration routes of modern goats from their region of domestication into southeastern Arabia and thereby shed light on human migratory and commercial networks during historical times.


Asunto(s)
ADN Mitocondrial/genética , Cabras/genética , Animales , Animales Domésticos/genética , Variación Genética , Omán , Filogenia , Reacción en Cadena de la Polimerasa
15.
J Wildl Dis ; 53(2): 339-343, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28118557

RESUMEN

The wildlife of the Greater Yellowstone Ecosystem carries brucellosis, which was first introduced to the area by cattle in the 19th century. Brucellosis transmission between wildlife and livestock has been difficult to study due to challenges in culturing the causative agent, Brucella abortus . We examined B. abortus transmission between American bison ( Bison bison ), Rocky Mountain elk ( Cervus elaphus nelsoni), and cattle ( Bos taurus ) using variable number tandem repeat (VNTR) markers on DNA from 98 B. abortus isolates recovered from populations in Idaho, Montana, and Wyoming, US. Our analyses reveal interspecies transmission. Two outbreaks (2007, 2008) in Montana cattle had B. abortus genotypes similar to isolates from both bison and elk. Nevertheless, similarity in elk and cattle isolates from the 2008 outbreak suggest that elk are the likely source of brucellosis transmission to cattle in Montana and Wyoming. Brucella abortus isolates from sampling in Montana appear to be divided in two clusters: one found in local Montana elk, cattle, and bison; and another found mainly in elk and a bison from Wyoming, which is consistent with brucellosis having entered Montana via migration of infected elk from Wyoming. Our findings illustrate complex patterns of brucellosis transmission among elk, bison, and cattle as well as the utility of VNTRs to infer the wildlife species of origin for disease outbreaks in livestock.


Asunto(s)
Bison , Brucelosis/transmisión , ADN/análisis , Ciervos , Genotipo , Animales , Brucella abortus , Brucelosis/genética , Bovinos , Ecosistema , Ganado , Montana , Wyoming
16.
Infect Genet Evol ; 43: 297-306, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27166095

RESUMEN

The Apicomplexan parasites, Theileria lestoquardi and Theileria annulata, the causative agents of theileriosis in small and large ruminants, are widespread in Oman, in areas where cattle, sheep and goats co-graze. Genetic analysis can provide insight into the dynamics of the parasite and the evolutionary relationship between species. Here we identified ten genetic markers (micro- and mini-satellites) spread across the T. lestoquardi genome, and confirmed their species specificity. We then genotyped T. lestoquardi in different regions in Oman. The genetic structures of T. lestoquardi populations were then compared with previously published data, for comparable panels of markers, for sympatric T. annulata isolates. In addition, we examined two antigen genes in T. annulata (Tams1 and Ta9) and their orthologues in T. lestoquardi (Tlms1 and Tl9). The genetic diversity and multiplicity of infection (MOI) were lower in T. lestoquardi (He=0.64-0.77) than T. annulata (He=0.83-0.85) in all populations. Very limited genetic differentiation was found among T. lestoquardi and T. annulata populations. In contrast, limited but significant linkage disequilibrium was observed within regional populations of each species. We identified eight T. annulata isolates in small ruminants; the diversity and MOI were lower among ovine/caprine compared to bovine. Sequence diversity of the antigen genes, Tams1 and Ta9 in T. annulata (π=0.0733 and π=0.155 respectively), was 10-fold and 3-fold higher than the orthologous Tlms1 and Tl9 in T. lestoquardi (π=0.006 and π=0.055, respectively). Despite a comparably high prevalence, T. lestoquardi has lower genetic diversity compared to sympatric T. annulata populations. There was no evidence of differentiation among populations of either species. In comparison to T. lestoquardi, T. annulata has a larger effective population size. While genetic exchange and recombination occur in both parasite species, the extent of diversity, overall, is less for T. lestoquardi. It is, therefore, likely that T. lestoquardi evolved from an ancestor of present day T. annulata and that this occurred either once or on a limited number of occasions.


Asunto(s)
Variación Genética , Genoma de Protozoos , Filogenia , Simpatría , Theileria annulata/genética , Theileria/genética , Theileriosis/epidemiología , Animales , Evolución Biológica , Bovinos , Marcadores Genéticos , Genotipo , Cabras/parasitología , Especificidad del Huésped , Desequilibrio de Ligamiento , Repeticiones de Microsatélite , Omán/epidemiología , Prevalencia , Oveja Doméstica/parasitología , Theileria/clasificación , Theileria/patogenicidad , Theileria annulata/clasificación , Theileria annulata/patogenicidad , Theileriosis/parasitología , Theileriosis/transmisión
17.
Artículo en Inglés | MEDLINE | ID: mdl-24660908

RESUMEN

The endangered Grevy's Zebra (Equus grevyi) is confined to the Horn of Africa, specifically Ethiopia and Kenya. It is threatened by habitat loss and fragmentation due to human encroachment of historic range. Knowledge of population genetics is essential for the development of appropriate conservation actions and management. The focus of this study was to assess the heterogeneity and genetic distinctiveness of the two Grevy's zebra populations in Ethiopia. Non-invasive fecal samples (N = 120) were collected during 2009-2010 from Grevy's zebra populations in the Alledeghi Wildlife Reserve and the Sarite area, Ethiopia. Analyses of a 329 bp of the mtDNA control region of 47 sequences, revealed the existence of two unreported haplotypes in the northern population of Alledeghi, that were not shared with the southern population of Sarite. The Sarite population is contiguous with the Grevy's zebra population in Kenya. The nucleotide diversity levels found in both the populations are extremely low.


Asunto(s)
Equidae/genética , Genoma Mitocondrial , Animales , Animales Salvajes , Secuencia de Bases , ADN Mitocondrial/genética , Especies en Peligro de Extinción , Etiopía , Variación Genética , Haplotipos , Kenia , Datos de Secuencia Molecular , Análisis de Secuencia de ADN/veterinaria
18.
PLoS One ; 10(10): e0139581, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26469349

RESUMEN

BACKGROUND: Theileriosis, caused by a number of species within the genus Theileria, is a common disease of livestock in Oman. It is a major constraint to the development of the livestock industry due to a high rate of morbidity and mortality in both cattle and sheep. Since little is currently known about the genetic diversity of the parasites causing theileriosis in Oman, the present study was designed to address this issue with specific regard to T. annulata in cattle. METHODS: Blood samples were collected from cattle from four geographically distinct regions in Oman for genetic analysis of the Theileria annulata population. Ten genetic markers (micro- and mini-satellites) representing all four chromosomes of T. annulata were applied to these samples using a combination of PCR amplification and fragment analysis. The resultant genetic data was analysed to provide a first insight into the structure of the T. annulata population in Oman. RESULTS: We applied ten micro- and mini-satellite markers to a total of 310 samples obtained from different regions (174 [56%] from Dhofar, 68 [22%] from Dhira, 44 [14.5%] from Batinah and 24 [8%] from Sharqia). A high degree of allelic diversity was observed among the four parasite populations. Expected heterozygosity for each site ranged from 0.816 to 0.854. A high multiplicity of infection was observed in individual hosts, with an average of 3.3 to 3.4 alleles per locus, in samples derived from Batinah, Dhofar and Sharqia regions. In samples from Dhira region, an average of 2.9 alleles per locus was observed. Mild but statistically significant linkage disequilibrium between pairs of markers was observed in populations from three of the four regions. In contrast, when the analysis was performed at farm level, no significant linkage disequilibrium was observed. Finally, no significant genetic differentiation was seen between the four populations, with most pair-wise FST values being less than 0.03. Slightly higher FST values (GST' = 0.075, θ = 0.07) were detected when the data for T. annulata parasites in Oman was compared with that previously generated for Turkey and Tunisia. CONCLUSION: Genetic analyses of T. annulata samples representing four geographical regions in Oman revealed a high level of genetic diversity in the parasite population. There was little evidence of genetic differentiation between parasites from different regions, and a high level of genetic diversity was maintained within each sub-population. These findings are consistent with a high parasite transmission rate and frequent movement of animals between different regions in Oman.


Asunto(s)
Polimorfismo Genético , Theileria annulata/genética , Animales , Bovinos , Femenino , Frecuencia de los Genes , Sitios Genéticos/genética , Marcadores Genéticos/genética , Genómica , Desequilibrio de Ligamiento , Repeticiones de Microsatélite/genética , Repeticiones de Minisatélite/genética , Omán , Theileria annulata/fisiología
19.
Acta Trop ; 148: 97-104, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25913735

RESUMEN

Over the past decade, Sudan has stepped up malaria control backed by WHO, and this has resulted in significant reduction in parasite rate, malaria morbidity and mortality. The present study analyzed Plasmodium falciparum parasites in four geographical separated areas, to examine whether the success in malaria control following the use of artemisinin-based combination therapy (ACT) has disrupted the population structure and evolution of the parasite. We examined 319 P. falciparum isolates collected between October 2009 and October 2012 in four different areas in Sudan (Jazira [central Sudan], Southern Darfur [western Sudan], Upper Nile [southern Sudan] and Kasala [eastern Sudan]). Twelve microsatellites were analyzed for allelic diversity, multi-locus haplotype and inter-population differentiation. Level of diversity was compared to that detected for three of the above microsatellites among P. falciparum parasites in central and eastern Sudan in 1999, prior to introduction of ACT. Diversity at each locus (unbiased heterozygosity [H]) was high in all areas (Jazira, H=0.67), (Southern Darfur, H=0.71), (Upper Nile, H=0.71), and (Kasala, H=0.63). Microsatellites were distributed widely and private alleles, detected in a single population, were rare. The extent of diversity in the above sites was similar to that seen, in 1999, in central (Khartoum, H=0.73) and eastern Sudan (Gedaref, H=0.75). Significant Linkage disequilibrium (LD) was observed between the microsatellites in all populations. Pairwise FST analysis revealed that parasites in the four areas could be considered as one population. However, the parasites in Sudan clustered away from parasites in West Africa and the Arabian Peninsula. Despite marked reduction in malaria risk in Sudan, the extent of diversity and parasite genetic structure are indicative of a large population size. Further considerable reduction in transmission would be needed before fragmented sub-population can be seen. In addition, the large divergence of P. falciparum in Sudan from West Africa and Arabian Peninsula populations may result from differential evolutionary pressures acting at the population level, which shall be considered in eradication plans.


Asunto(s)
Variación Genética , Desequilibrio de Ligamiento/genética , Malaria Falciparum/parasitología , Repeticiones de Microsatélite/genética , Plasmodium falciparum/genética , Antimaláricos/uso terapéutico , Artemisininas/uso terapéutico , Quimioterapia Combinada , Genotipo , Haplotipos , Humanos , Malaria Falciparum/tratamiento farmacológico , Sudán , Repeticiones de Trinucleótidos/genética
20.
Mol Phylogenet Evol ; 85: 88-96, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25681678

RESUMEN

All extant equid species are grouped in a single genus - Equus. Among those, ass-like equids have remained particularly unstudied and their phylogenetic relations were poorly understood, most probably because they inhabit extreme environments in remote geographic areas. To gain further insights into the evolutionary history of ass-like equids, we have used a non-invasive sampling approach to collect representative fecal samples of extant African and Asiatic ass-like equid populations across their distribution range and mitochondrial DNA (mtDNA) sequencing analyses to examine intraspecific genetic diversity and population structure, and to reconstruct phylogenetic relations among wild ass species/subspecies. Sequence analyses of 410 base pairs of the fast evolving mtDNA control region identified the Asiatic wild ass population of Kalamaili (China) as the one displaying the highest diversity among all wild ass populations. Phylogenetic analyses of complete cytochrome b sequences revealed that African and Asiatic wild asses shared a common ancestor approximately 2.3Mya and that diversification in both groups occurred much latter, probably driven by climatic events during the Pleistocene. Inferred genetic relationships among Asiatic wild ass species do not support E. kiang monophyly, highlighting the need of more extensive studies in order to clarify the taxonomic status of species/subspecies belonging to this branch of the Equus phylogeny. These results highlight the importance of re-assessing the evolutionary history of ass-like equid species, and urge to extend studies at the population level to efficiently design conservation and management actions for these threatened species.


Asunto(s)
Evolución Biológica , Equidae/clasificación , Variación Genética , Filogenia , África , Animales , Teorema de Bayes , China , Citocromos b/genética , ADN Mitocondrial/genética , Especies en Peligro de Extinción , Equidae/genética , Genética de Población , Haplotipos , Modelos Genéticos , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA