Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Mol Biol ; 432(4): 1020-1034, 2020 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-31866295

RESUMEN

Apolipoproteins are involved in pathological conditions of Alzheimer's disease (AD), and it has been reported that truncated apolipoprotein fragments and ß-amyloid (Aß) peptides coexist as neurotoxic heteromers within the plaques. Therefore, it is important to investigate these complexes at the molecular level to better understand their properties and roles in the pathology of AD. Here, we present a mechanistic insight into such heteromerization using a structurally homologue apolipoprotein fragment of apoA-I (4F) complexed with Aß(M1-42) and characterize their toxicity. The 4F peptide slows down the aggregation kinetics of Aß(M1-42) by constraining its structural plasticity. NMR and CD experiments identified 4F-Aß(M1-42) heteromers comprised of unstructured Aß(M1-42) and helical 4F. A uniform two-fold reduction in 15N/1H NMR signal intensities of Aß(M1-42) with no observable chemical shift perturbation indicated the formation of a large complex, which was further confirmed by diffusion NMR experiments. Microsecond-scale atomistic molecular dynamics simulations showed that 4F interaction with Aß(M1-42) is electrostatically driven and induces unfolding of Aß(M1-42). Neurotoxicity profiling of Aß(M1-42) complexed with 4F confirms a significant reduction in cell viability and neurite growth. Thus, the molecular architecture of heteromerization between 4F and Aß(M1-42) discovered in this study provides evidence toward our understanding of the role of apolipoproteins or their truncated fragments in exacerbating AD pathology.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Apolipoproteína A-I/metabolismo , Péptidos beta-Amiloides/química , Péptidos beta-Amiloides/farmacología , Apolipoproteína A-I/química , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Dicroismo Circular , Humanos , Espectroscopía de Resonancia Magnética , Simulación de Dinámica Molecular , Péptidos/química , Péptidos/farmacología , Unión Proteica , Conformación Proteica
2.
Autophagy ; 15(10): 1787-1800, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-30894053

RESUMEN

It has been indicated that the Golgi apparatus contributes to autophagy, but how it is involved in autophagosome formation and maturation is not well understood. Here we show that amino acid starvation causes trans-Golgi derived membrane fragments to colocalize with autophagosomes. Depletion of the Golgi stacking protein GORASP2/GRASP55, but not GORASP1/GRASP65, increases both MAP1LC3 (LC3)-II and SQSTM1/p62 levels. We demonstrate that GORASP2 facilitates autophagosome-lysosome fusion by physically linking autophagosomes and lysosomes through the interactions with LC3 on autophagosomes and LAMP2 on late endosomes/lysosomes. Furthermore, we provide evidence that GORASP2 interacts with BECN1 to facilitate the assembly and membrane association of the phosphatidylinositol 3-kinase (PtdIns3K) UVRAG complex. These findings indicate that GORASP2 plays an important role in autophagosome maturation during amino acid starvation. Abbreviations: ATG14: autophagy related 14; BafA1: bafilomycin A1; BSA: bovine serum albumin; CQ: chloroquine; EBSS: earle's balanced salt solution; EM: electron microscopy; EEA1: early endosome antigen 1; GFP: green fluorescent protein; GORASP1/GRASP65: golgi reassembly stacking protein 1; GORASP2/GRASP55: golgi reassembly stacking protein 2; LAMP1: lysosomal-associated membrane protein 1; LAMP2: lysosomal-associated membrane protein 2; MAP1LC3: microtubule associated protein 1 light chain 3; MTOR: mechanistic target of rapamycin kinase; PBS: phosphate-buffered saline; PtdIns3K: phosphatidylinositol 3-kinase; PtdIns3P: phosphatidylinositol 3-phosphate; PK: protease K; PNS: post-nuclear supernatant; RFP: red fluorescent protein; SD: standard deviation; TGN: trans-Golgi network; UVRAG: UV radiation resistance associated.


Asunto(s)
Autofagosomas/fisiología , Proteínas de la Matriz de Golgi/fisiología , Lisosomas/fisiología , Fusión de Membrana/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Animales , Autofagosomas/metabolismo , Autofagia/genética , Células Cultivadas , Proteínas de la Matriz de Golgi/genética , Células HeLa , Humanos , Lisosomas/metabolismo , Complejos Multiproteicos/metabolismo , Complejos Multiproteicos/fisiología , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/fisiología , Fosfatos de Fosfatidilinositol/metabolismo , Ratas , Proteínas Supresoras de Tumor/fisiología
3.
Mol Biol Cell ; 30(6): 766-777, 2019 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-30649990

RESUMEN

The Golgi apparatus is a membrane-bound organelle that serves as the center for trafficking and processing of proteins and lipids. To perform these functions, the Golgi forms a multilayer stacked structure held by GRASP55 and GRASP65 trans-oligomers and perhaps their binding partners. Depletion of GRASP proteins disrupts Golgi stack formation and impairs critical functions of the Golgi, such as accurate protein glycosylation and sorting. However, how Golgi destruction affects other cellular activities is so far unknown. Here, we report that depletion of GRASP proteins reduces cell attachment and migration. Interestingly, GRASP depletion reduces the protein level of α5ß1 integrin, the major cell adhesion molecule at the surface of HeLa and MDA-MB-231 cells, due to decreased integrin protein synthesis. GRASP depletion also increases cell growth and total protein synthesis. These new findings enrich our understanding on the role of the Golgi in cell physiology and provide a potential target for treating protein-trafficking disorders.


Asunto(s)
Aparato de Golgi/metabolismo , Proteínas de la Matriz de Golgi/genética , Proteínas de la Matriz de Golgi/fisiología , Proteínas Portadoras , Adhesión Celular/fisiología , Línea Celular , Movimiento Celular/fisiología , Glicosilación , Aparato de Golgi/fisiología , Proteínas de la Matriz de Golgi/metabolismo , Células HeLa/metabolismo , Humanos , Integrina alfa5beta1/metabolismo , Integrinas/metabolismo , Membranas Intracelulares/metabolismo , Proteínas de la Membrana , Unión Proteica , Transporte de Proteínas/fisiología
4.
Mol Biol Cell ; 28(21): 2833-2842, 2017 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-28814501

RESUMEN

Golgi reassembly stacking protein of 65 kDa (GRASP65) and Golgi reassembly stacking protein of 55 kDa (GRASP55) were originally identified as Golgi stacking proteins; however, subsequent GRASP knockdown experiments yielded inconsistent results with respect to the Golgi structure, indicating a limitation of RNAi-based depletion. In this study, we have applied the recently developed clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 technology to knock out GRASP55 and GRASP65, individually or in combination, in HeLa and HEK293 cells. We show that double knockout of GRASP proteins disperses the Golgi stack into single cisternae and tubulovesicular structures, accelerates protein trafficking, and impairs accurate glycosylation of proteins and lipids. These results demonstrate a critical role for GRASPs in maintaining the stacked structure of the Golgi, which is required for accurate posttranslational modifications in the Golgi. Additionally, the GRASP knockout cell lines developed in this study will be useful tools for studying the role of GRASP proteins in other important cellular processes.


Asunto(s)
Aparato de Golgi/fisiología , Proteínas de la Membrana/deficiencia , Secuencia de Bases , Técnicas de Silenciamiento del Gen , Técnicas de Inactivación de Genes , Aparato de Golgi/genética , Aparato de Golgi/metabolismo , Proteínas de la Matriz de Golgi , Células HEK293 , Células HeLa , Humanos , Membranas Intracelulares/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Procesamiento Proteico-Postraduccional , Transporte de Proteínas , Interferencia de ARN
5.
PLoS One ; 11(4): e0153518, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27082996

RESUMEN

OTSSP167 was recently characterized as a potent inhibitor for maternal embryonic leucine zipper kinase (MELK) and is currently tested in Phase I clinical trials for solid tumors that have not responded to other treatment. Here we report that OTSSP167 abrogates the mitotic checkpoint at concentrations used to inhibit MELK. The abrogation is not recapitulated by RNAi mediated silencing of MELK in cells. Although OTSSP167 indeed inhibits MELK, it exhibits off-target activity against Aurora B kinase in vitro and in cells. Furthermore, OTSSP167 inhibits BUB1 and Haspin kinases, reducing phosphorylation at histones H2AT120 and H3T3 and causing mislocalization of Aurora B and associated chromosomal passenger complex from the centromere/kinetochore. The results suggest that OTSSP167 may have additional mechanisms of action for cancer cell killing and caution the use of OTSSP167 as a MELK specific kinase inhibitor in biochemical and cellular assays.


Asunto(s)
Puntos de Control de la Fase M del Ciclo Celular/efectos de los fármacos , Naftiridinas/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Anticuerpos/farmacología , Aurora Quinasa B/antagonistas & inhibidores , Centrómero/efectos de los fármacos , Centrómero/fisiología , Células HeLa , Humanos , Cinetocoros/efectos de los fármacos , Cinetocoros/fisiología , Células MCF-7 , Mitosis/efectos de los fármacos , Mitosis/genética , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/inmunología , Transducción de Señal/efectos de los fármacos
6.
Front Neurosci ; 9: 340, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26441511

RESUMEN

The Golgi apparatus is an essential cellular organelle for post-translational modifications, sorting, and trafficking of membrane and secretory proteins. Proper functionality of the Golgi requires the formation of its unique cisternal-stacking morphology. The Golgi structure is disrupted in a variety of neurodegenerative diseases, suggesting a common mechanism and contribution of Golgi defects in neurodegenerative disorders. A recent study on Alzheimer's disease (AD) revealed that phosphorylation of the Golgi stacking protein GRASP65 disrupts its function in Golgi structure formation, resulting in Golgi fragmentation. Inhibiting GRASP65 phosphorylation restores the Golgi morphology from Aß-induced fragmentation and reduces Aß production. Perturbing Golgi structure and function in neurons may directly impact trafficking, processing, and sorting of a variety of proteins essential for synaptic and dendritic integrity. Therefore, Golgi defects may ultimately promote the development of AD. In the current review, we focus on the cellular impact of impaired Golgi morphology and its potential relationship to AD disease development.

7.
Nat Commun ; 6: 6775, 2015 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-25854549

RESUMEN

The chromosomal passenger complex (CPC) localizes to centromeres where it activates the mitotic checkpoint in response to inappropriate inter-kinetochore tension. This error correction function is essential for proper chromosome segregation. Here we define several critical features of CPC localization and function. First, the Borealin dimerization domain suppresses dynamic exchange at the centromere to allow optimal CPC function. Second, Borealin dimerization is essential to target a subpopulation of CPC proximal to the kinetochore when the mitotic spindle is disrupted. This subpopulation is also needed for full CPC checkpoint function. The existence of a pool of CPC at the kinetochore suggests that error correction is more complicated than predicted from the Aurora B phosphorylation gradient model. Finally, Haspin kinase plays a key role in maintaining the slowly exchanging centromere Borealin pool, while Aurora B and Mps1 play minimal roles in maintaining CPC localization once cells are in mitosis.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Segregación Cromosómica , Cinetocoros/metabolismo , Puntos de Control de la Fase M del Ciclo Celular , Multimerización de Proteína , Aurora Quinasa B/metabolismo , Western Blotting , Centrómero/metabolismo , Citometría de Flujo , Recuperación de Fluorescencia tras Fotoblanqueo , Células HeLa , Código de Histonas , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Microscopía Fluorescente , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Tirosina Quinasas/metabolismo
8.
J Biol Chem ; 288(49): 35149-58, 2013 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-24151075

RESUMEN

MPS1 kinase is an essential component of the spindle assembly checkpoint (SAC), but its functioning mechanisms are not fully understood. We have shown recently that direct interaction between BUBR1 and MAD2 is critical for assembly and function of the human mitotic checkpoint complex (MCC), the SAC effector. Here we report that inhibition of MPS1 kinase activity by reversine disrupts BUBR1-MAD2 as well as CDC20-MAD2 interactions, causing premature activation of the anaphase-promoting complex/cyclosome. The effect of MPS1 inhibition is likely due to reduction of closed MAD2 (C-MAD2), as expressing a MAD2 mutant (MAD2(L13A)) that is locked in the C conformation rescued the checkpoint defects. In the presence of reversine, exogenous C-MAD2 does not localize to unattached kinetochores but is still incorporated into the MCC. Contrary to a previous report, we found that sustained MPS1 activity is required for maintaining both the MAD1·C-MAD2 complex and open MAD2 (O-MAD2) at unattached kinetochores to facilitate C-MAD2 production. Additionally, mitotic phosphorylation of BUBR1 is also affected by MPS1 inhibition but seems dispensable for MCC assembly. Our results support the notion that MPS1 kinase promotes C-MAD2 production and subsequent MCC assembly to activate the SAC.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas Mad2/química , Proteínas Mad2/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Ciclosoma-Complejo Promotor de la Anafase/química , Ciclosoma-Complejo Promotor de la Anafase/genética , Ciclosoma-Complejo Promotor de la Anafase/metabolismo , Puntos de Control del Ciclo Celular/efectos de los fármacos , Proteínas de Ciclo Celular/antagonistas & inhibidores , Proteínas de Ciclo Celular/genética , Células HeLa , Humanos , Cinetocoros/efectos de los fármacos , Cinetocoros/metabolismo , Proteínas Mad2/genética , Mitosis , Morfolinas/farmacología , Complejos Multiproteicos/química , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Conformación Proteica , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/genética , Proteínas Tirosina Quinasas/antagonistas & inhibidores , Proteínas Tirosina Quinasas/genética , Purinas/farmacología , Transducción de Señal , Huso Acromático/metabolismo
9.
J Biochem ; 151(4): 361-9, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22383538

RESUMEN

The chromosomal passenger complex (CPC) senses tension defects at the kinetochore to activate the spindle assembly checkpoint, and helps to position the cleavage furrow. The CPC, consisting of INCENP, Survivin, Borealin and Aurora B localizes to the inner centromere at metaphase and re-localizes to the spindle midzone at anaphase; several CPC functions are regulated by post-translational modification. Borealin is phosphorylated at multiple sites and phosphorylation at S219 causes Borealin to migrate more slowly upon electrophoresis. Here we find that Cdk1 can induce a mobility shift of Borealin, suggesting that S219 phosphorylation is under Cdk1 control. However, Cdk1 is inefficient at phosphorylating purified Borealin in vitro. A yeast orthologue of Borealin, Npl1, is dephosphorylated by the phosphatase Cdc14. We find no difference in the mobility shift of Borealin in human cells lacking either Cdc14A or Cdc14B. In contrast, the phosphatase inhibitor okadaic acid does delay the dephosphorylation of Borealin as cells exit mitosis. The proteasome inhibitor MG132 reduces Borealin phosphorylation in mitosis and increases the steady-state level of Borealin, especially in mutants lacking the C-terminus. However, a second, structurally unrelated proteasome inhibitor, lactacystin did not up-regulate Borealin. These results suggest that the effect of MG132 on Borealin is due to the inhibition of an intracellular protease other than the proteasome.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Leupeptinas/farmacología , Ácido Ocadaico/farmacología , Monoéster Fosfórico Hidrolasas/antagonistas & inhibidores , Inhibidores de Proteasoma , Procesamiento Proteico-Postraduccional , Proteolisis/efectos de los fármacos , Acetilcisteína/análogos & derivados , Acetilcisteína/farmacología , Sustitución de Aminoácidos , Proteína Quinasa CDC2/química , Proteína Quinasa CDC2/genética , Proteína Quinasa CDC2/metabolismo , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Fosfatasas de Especificidad Dual/genética , Fosfatasas de Especificidad Dual/metabolismo , Expresión Génica , Células HeLa , Humanos , Fragmentos de Péptidos/metabolismo , Fosforilación , Transporte de Proteínas , Ubiquitina/metabolismo
10.
J Cell Sci ; 124(Pt 17): 2976-87, 2011 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-21878504

RESUMEN

Tumor cells are commonly aneuploid, a condition contributing to cancer progression and drug resistance. Understanding how chromatids are linked and separated at the appropriate time will help uncover the basis of aneuploidy and will shed light on the behavior of tumor cells. Cohesion of sister chromatids is maintained by the multi-protein complex cohesin, consisting of Smc1, Smc3, Scc1 and Scc3. Sororin associates with the cohesin complex and regulates the segregation of sister chromatids. Sororin is phosphorylated in mitosis; however, the role of this modification is unclear. Here we show that mutation of potential cyclin-dependent kinase 1 (Cdk1) phosphorylation sites leaves sororin stranded on chromosomes and bound to cohesin throughout mitosis. Sororin can be precipitated from cell lysates with DNA-cellulose, and only the hypophosphorylated form of sororin shows this association. These results suggest that phosphorylation of sororin causes its release from chromatin in mitosis. Also, the hypophosphorylated form of sororin increases cohesion between sister chromatids, suggesting that phosphorylation of sororin by Cdk1 influences sister chromatid cohesion. Finally, phosphorylation-deficient sororin can alleviate the mitotic block that occurs upon knockdown of endogenous sororin. This mitotic block is abolished by ZM447439, an Aurora kinase inhibitor, suggesting that prematurely separated sister chromatids activate the spindle assembly checkpoint through an Aurora kinase-dependent pathway.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteína Quinasa CDC2/metabolismo , Proteínas de Ciclo Celular/metabolismo , Cromátides/metabolismo , Proteína Quinasa CDC2/genética , Cromátides/enzimología , Cromátides/genética , Proteínas Cromosómicas no Histona/metabolismo , Células HeLa , Humanos , Puntos de Control de la Fase M del Ciclo Celular/fisiología , Mitosis/fisiología , Mutagénesis Sitio-Dirigida , Fosforilación , Intercambio de Cromátides Hermanas , Transfección , Cohesinas
11.
Mol Cancer Ther ; 8(6): 1646-54, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19509263

RESUMEN

Cell death induced by agents that disrupt microtubules can kill cells by inducing a prolonged mitotic block. This mitotic block is dependent on the spindle assembly checkpoint, a surveillance system that ensures the bipolar attachment of chromosomes to the mitotic spindle before the onset of anaphase. Under some conditions, the spindle assembly checkpoint can become weakened, allowing cells to exit mitosis despite the presence of chromosomes that are not properly attached to the mitotic spindle. Here, we use an Aurora kinase inhibitor to drive mitotic exit and test the effect of mitotic arrest length on death in the subsequent interphase. Cells that are blocked in mitosis for >15 h die shortly after exiting from mitosis, whereas cells that exit after being blocked for <15 h show variable fates, with some living for days after exiting mitosis. Cells blocked in mitosis by either Taxol or epothilone B are acutely sensitive to the death ligand tumor necrosis factor-related apoptosis-inducing ligand, suggesting that prolonged mitosis allows the gradual accumulation of internal death signals, rendering cells hypersensitive to additional prodeath cues. Death under these conditions is initiated while cyclin B1 is still present, indicating that cells are in mitosis. Our experiments suggest that there is a point of no return during prolonged mitotic block after which mitotic exit can no longer block death.


Asunto(s)
Epotilonas/farmacología , Mitosis/efectos de los fármacos , Paclitaxel/farmacología , Moduladores de Tubulina/farmacología , Benzamidas/farmacología , Caspasa 3/metabolismo , Muerte Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Ciclina B/metabolismo , Ciclina B1 , Técnica del Anticuerpo Fluorescente , Fase G1 , Células HeLa , Humanos , Nocodazol/farmacología , Quinazolinas/farmacología , Ligando Inductor de Apoptosis Relacionado con TNF/farmacología , Factores de Tiempo
12.
J Cell Biochem ; 106(1): 33-41, 2009 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-19009561

RESUMEN

Activating ras mutations are frequently found in malignant tumors of the pancreas, colon, lung and other tissues. RAS activates a number of downstream pathways that ultimately cause cellular transformation. Several recent studies suggested that one of those pathways involves Aurora kinases. Overexpression of Aurora-B kinase can augment transformation by oncogenic RAS, however the mechanism was not determined. The cooperative effect of high levels of Aurora kinase is important since this kinase is frequently overexpressed in human tumors. We have used two Aurora kinase inhibitors to test their effect on RAS signaling. We find that these inhibitors have no effect on the phosphorylation of MEK1/2 or MAPK in response to RAS. Furthermore, inhibiting Aurora kinases in human cancer cells with or without activated RAS did not change the length of the cell cycle nor induce apoptosis suggesting that these kinases do not play a direct role in these key cellular responses to activated RAS. Overexpression of Aurora B can cause cells to become polyploid. Also, inducing polyploidy with cytochalasin D was reported to induce neoplastic transformation, suggesting that Aurora overexpression may cooperate with RAS indirectly by inducing polyploidy. We find that inducing polyploidy with cytochalasin D or blebbistatin does not enhance transformation by oncogenic RAS. Our observations argue against a direct role for Aurora kinases in the RAS-MAPK pathway, and suggest that the polyploid state does not enhance transformation by RAS.


Asunto(s)
Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal , Proteínas ras/metabolismo , Animales , Aurora Quinasa B , Aurora Quinasas , Benzamidas/farmacología , Ciclo Celular , Línea Celular Tumoral , Fibroblastos/metabolismo , Histonas/metabolismo , Humanos , Quinasas Quinasa Quinasa PAM/metabolismo , Ratones , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Células 3T3 NIH , Fosforilación , Poliploidía , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Quinazolinas/farmacología , Ratas , Quinasas raf/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...