Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
PLoS One ; 7(10): e48019, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23118920

RESUMEN

The forkhead box protein A2 (FOXA2) is an important regulator of glucose and lipid metabolism and organismal energy balance. Little is known about how FOXA2 protein expression and activity are regulated by post-translational modifications. We have identified that FOXA2 is post-translationally modified by covalent attachment of a small ubiquitin related modifier-1 (SUMO-1) and mapped the sumoylation site to the amino acid lysine 6 (K6). Preventing sumoylation by mutating the SUMO acceptor K6 to arginine resulted in downregulation of FOXA2 protein but not RNA expression in INS-1E insulinoma cells. K6R mutation also downregulated FOXA2 protein levels in HepG2 hepatocellular carcinoma cells, HCT116 colon cancer cells and LNCaP and DU145 prostate cancer cells. Further, interfering with FOXA2 sumoylation through siRNA mediated knockdown of UBC9, an essential SUMO E2 conjugase, resulted in downregulation of FOXA2 protein levels. Stability of sumoylation deficient FOXA2K6R mutant protein was restored when SUMO-1 was fused in-frame. FOXA2 sumoylation and FOXA2 protein levels were increased by PIAS1 SUMO ligase but not a SUMO ligase activity deficient PIAS1 mutant. Although expressed at lower levels, sumoylation deficient FOXA2K6R mutant protein was detectable in the nucleus indicating that FOXA2 nuclear localization is independent of sumoylation. Sumoylation increased the transcriptional activity of FOXA2 on Pdx-1 area I enhancer. Together, our results show that sumoylation regulates FOXA2 protein expression and activity.


Asunto(s)
Factor Nuclear 3-beta del Hepatocito/metabolismo , Sumoilación , Secuencias de Aminoácidos , Sustitución de Aminoácidos , Animales , Línea Celular , Núcleo Celular/metabolismo , Elementos de Facilitación Genéticos , Técnicas de Silenciamiento del Gen , Factor Nuclear 3-beta del Hepatocito/genética , Factor Nuclear 3-beta del Hepatocito/fisiología , Proteínas de Homeodominio/genética , Leupeptinas/farmacología , Mutagénesis Sitio-Dirigida , Complejo de la Endopetidasa Proteasomal/metabolismo , Inhibidores de Proteasoma/farmacología , Proteínas Inhibidoras de STAT Activados/genética , Proteínas Inhibidoras de STAT Activados/metabolismo , Proteínas Inhibidoras de STAT Activados/fisiología , Estabilidad Proteica , Transporte de Proteínas , Proteolisis , ARN Interferente Pequeño/genética , Ratas , Transactivadores/genética , Enzimas Ubiquitina-Conjugadoras/genética , Enzimas Ubiquitina-Conjugadoras/metabolismo
2.
PLoS One ; 7(4): e35717, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22539995

RESUMEN

GATA4 confers cell type-specific gene expression on genes expressed in cardiovascular, gastro-intestinal, endocrine and neuronal tissues by interacting with various ubiquitous and cell-type-restricted transcriptional regulators. By using yeast two-hybrid screening approach, we have identified PIAS1 as an intestine-expressed GATA4 interacting protein. The physical interaction between GATA4 and PIAS1 was confirmed in mammalian cells by coimmunoprecipitation and two-hybrid analysis. The interacting domains were mapped to the second zinc finger and the adjacent C-terminal basic region of GATA4 and the RING finger and the adjoining C-terminal 60 amino acids of PIAS1. PIAS1 and GATA4 synergistically activated IFABP and SI promoters but not LPH promoters suggesting that PIAS1 differentially activates GATA4 targeted promoters. In primary murine enterocytes PIAS1 was recruited to the GATA4-regulated IFABP promoter. PIAS1 promoted SUMO-1 modification of GATA4 on lysine 366. However, sumoylation was not required for the nuclear localization and stability of GATA4. Further, neither GATA4 sumoylation nor the SUMO ligase activity of PIAS1 was required for coactivation of IFABP promoter by GATA4 and PIAS1. Together, our results demonstrate that PIAS1 is a SUMO ligase for GATA4 that differentially regulates GATA4 transcriptional activity independent of SUMO ligase activity and GATA4 sumoylation.


Asunto(s)
Factor de Transcripción GATA4/metabolismo , Proteínas Inhibidoras de STAT Activados/metabolismo , Proteína SUMO-1/metabolismo , Inmunoprecipitación de Cromatina , Proteínas de Unión a Ácidos Grasos/genética , Proteínas de Unión a Ácidos Grasos/metabolismo , Células HCT116 , Humanos , Intestinos/enzimología , Regiones Promotoras Genéticas , Unión Proteica , Sumoilación , Técnicas del Sistema de Dos Híbridos , Dedos de Zinc
3.
FASEB J ; 25(8): 2592-603, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21525490

RESUMEN

Serum response factor (SRF) is an essential regulator of myogenic and neurogenic genes and the ubiquitously expressed immediate-early genes. The purpose of this study is to determine SRF expression pattern in murine pancreas and examine the role of SRF in pancreatic gene expression. Immunohistochemical analysis of wild-type pancreas and LacZ staining of pancreas from SRF LacZ knock-in animals showed that SRF expression is restricted to ß cells. SRF bound to the rat insulin promoter II (RIP II) serum response element, an element conserved in both rat I and murine I and II insulin promoters. SRF activated RIP II, and SRF binding to RIP II and the exon 5-encoded 64-aa subdomain of SRF was required for this activation. Transient or stable knockdown of SRF leads to down-regulation of insulin gene expression, suggesting that SRF is required for insulin gene expression. Further, SRF physically interacted with the pancreas and duodenum homeobox-1 (Pdx-1) and synergistically activated RIP II. Elevated glucose concentration down-regulated SRF binding to RIP II SRE, and this down-regulation was associated with decreased RIP II activity and increased SRF phosphorylation on serine 103. Together, our results demonstrate that SRF is a glucose concentration-sensitive regulator of insulin gene expression.


Asunto(s)
Células Secretoras de Insulina/metabolismo , Insulina/genética , Factor de Respuesta Sérica/genética , Factor de Respuesta Sérica/metabolismo , Animales , Secuencia de Bases , Sitios de Unión/genética , Línea Celular , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Regulación de la Expresión Génica , Glucosa/metabolismo , Proteínas de Homeodominio/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Microscopía Fluorescente , Regiones Promotoras Genéticas , ARN Interferente Pequeño/genética , Ratas , Factor de Respuesta Sérica/deficiencia , Transactivadores/metabolismo , Transfección
4.
World J Surg ; 35(8): 1757-65, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21210118

RESUMEN

GATA factors are unique transcription factors with conserved DNA-binding domains. They serve diverse roles in embryogenesis, cell differentiation, regulation of tissue-specific genes, and carcinogenesis. The subfamily GATA-4, -5, and -6 are highly expressed in endoderm-derived organs and regulate multiple gut-specific genes. Multiple studies have analyzed the role of GATA factors in gastrointestinal (GI) malignancy, such as those of the stomach, pancreas, and colon, and premalignant lesions such as Barrett's esophagus. The GATA factors appear to have distinct roles in regulating key genes involved in GI malignancy. Understanding the precise role of GATA factors in malignancy may lead to the development of effective molecular targets for cancer therapy.


Asunto(s)
Factores de Transcripción GATA/genética , Neoplasias Gastrointestinales/genética , Medicina de Precisión/tendencias , Adenocarcinoma/genética , Esófago de Barrett/genética , Transformación Celular Neoplásica/genética , Neoplasias Colorrectales/genética , Análisis Mutacional de ADN , Progresión de la Enfermedad , Neoplasias Esofágicas/genética , Predicción , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Neoplasias Pancreáticas/genética , Lesiones Precancerosas/genética , Neoplasias Gástricas/genética
5.
Neoplasia ; 12(11): 856-65, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21076612

RESUMEN

GATA6 is a zinc finger transcription factor expressed in the colorectal epithelium. We have examined the expression of GATA6 in colon cancers and investigated the mechanisms by which GATA6 regulates colon cancer cell invasion. GATA6 was overexpressed in colorectal polyps and primary and metastatic tumors. GATA6 was strongly expressed in both the nuclear and cytoplasmic compartments of the colon cancer cells. GATA6 expression was upregulated in invasive HT29 and KM12L4 cells compared with the parental HT29 and KM12 cells and positively correlated with urokinase-type plasminogen activator (uPA) gene expression. Small interfering RNA (siRNA) knockdown of GATA6 resulted in reduced uPA gene expression and cell invasion. GATA6 bound to the uPA gene regulatory sequences in vivo and activated uPA promoter activity in vitro. uPA promoter deletion analysis indicated that the promoter proximal Sp1 sites were required for GATA6 activation of the uPA promoter. Accordingly, GATA6 physically associated with Sp1 and siRNA knockdown of Sp1 decreased GATA6 activation of the uPA promoter activity suggesting that Sp1 recruits GATA6 to the uPA promoter and mediates GATA6 induced activation of the uPA promoter activity. On the basis of our results, we conclude that GATA6 is an important regulator of uPA gene expression, and the dysregulated expression of GATA6 contributes to colorectal tumorigenesis and tumor invasion.


Asunto(s)
Factor de Transcripción GATA6/metabolismo , Secuencias Reguladoras de Ácidos Nucleicos/genética , Activador de Plasminógeno de Tipo Uroquinasa/metabolismo , Sitios de Unión/genética , Western Blotting , Línea Celular Tumoral , Movimiento Celular , Inmunoprecipitación de Cromatina , Neoplasias del Colon/genética , Neoplasias del Colon/metabolismo , Neoplasias del Colon/patología , Factor de Transcripción GATA6/genética , Regulación Neoplásica de la Expresión Génica , Células HCT116 , Células HT29 , Humanos , Inmunohistoquímica , Luciferasas/genética , Luciferasas/metabolismo , Invasividad Neoplásica , Metástasis de la Neoplasia , Regiones Promotoras Genéticas/genética , Unión Proteica , Interferencia de ARN , Factor de Transcripción Sp1/genética , Factor de Transcripción Sp1/metabolismo , Activador de Plasminógeno de Tipo Uroquinasa/genética
6.
Mol Cell Biol ; 30(2): 399-412, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19917725

RESUMEN

Activation of estrogen receptor alpha (ERalpha) results in both induction and repression of gene transcription; while mechanistic details of estrogen induction are well described, details of repression remain largely unknown. We characterized several ERalpha-repressed targets and examined in detail the mechanism for estrogen repression of Reprimo (RPRM), a cell cycle inhibitor. Estrogen repression of RPRM is rapid and robust and requires a tripartite interaction between ERalpha, histone deacetylase 7 (HDAC7), and FoxA1. HDAC7 is the critical HDAC needed for repression of RPRM; it can bind to ERalpha and represses ERalpha's transcriptional activity--this repression does not require HDAC7's deacetylase activity. We further show that the chromatin pioneer factor FoxA1, well known for its role in estrogen induction of genes, is recruited to the RPRM promoter, is necessary for repression of RPRM, and interacts with HDAC7. Like other FoxA1 recruitment sites, the RPRM promoter is characterized by H3K4me1/me2. Estrogen treatment causes decreases in H3K4me1/me2 and release of RNA polymerase II (Pol II) from the RPRM proximal promoter. Overall, these data implicate a novel role for HDAC7 and FoxA1 in estrogen repression of RPRM, a mechanism which could potentially be generalized to many more estrogen-repressed genes and hence be important in both normal physiology and pathological processes.


Asunto(s)
Proteínas de Ciclo Celular/genética , Receptor alfa de Estrógeno/metabolismo , Regulación de la Expresión Génica , Glicoproteínas/genética , Factor Nuclear 3-alfa del Hepatocito/metabolismo , Histona Desacetilasas/metabolismo , Proteínas de Ciclo Celular/antagonistas & inhibidores , Línea Celular Tumoral , Metilación de ADN/efectos de los fármacos , Estradiol/análogos & derivados , Estradiol/farmacología , Antagonistas de Estrógenos/farmacología , Receptor alfa de Estrógeno/efectos de los fármacos , Estrógenos/farmacología , Fulvestrant , Glicoproteínas/antagonistas & inhibidores , Factor Nuclear 3-alfa del Hepatocito/efectos de los fármacos , Histona Desacetilasas/efectos de los fármacos , Histonas/efectos de los fármacos , Histonas/metabolismo , Humanos , Regiones Promotoras Genéticas/efectos de los fármacos , Regiones Promotoras Genéticas/fisiología , ARN Polimerasa II/efectos de los fármacos , ARN Polimerasa II/metabolismo , Activación Transcripcional/efectos de los fármacos , Activación Transcripcional/fisiología
7.
Pancreas ; 37(2): 210-20, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18665085

RESUMEN

OBJECTIVES: The purpose of this study was to investigate whether pancreatic and duodenal homeobox factor 1 (PDX-1) could serve as a potential molecular target for the treatment of pancreatic cancer. METHODS: Cell proliferation, invasion capacity, and protein levels of cell cycle mediators were determined in human pancreatic cancer cells transfected with mouse PDX-1 (mPDX-1) alone or with mPDX-1 short hairpin RNA (shRNA) and/or human PDX-1 shRNA (huPDX-1 shRNA). Tumor cell growth and apoptosis were also evaluated in vivo in PANC-1 tumor-bearing severe combined immunodeficient mice receiving multiple treatments of intravenous liposomal huPDX-1 shRNA. RESULTS: mPDX-1 overexpression resulted in the significant increase of cell proliferation and invasion in MIA PaCa2, but not PANC-1 cells. This effect was blocked by knocking down mPDX-1 expression with mPDX-1 shRNA. Silencing of huPDX-1 expression in PANC-1 cells inhibited cell proliferation in vitro and suppressed tumor growth in vivo which was associated with increased tumor cell apoptosis. PDX-1 overexpression resulted in dysregulation of the cell cycle with up-regulation of cyclin D, cyclin E, and Cdk2 and down-regulation of p27. CONCLUSIONS: PDX-1 regulates cell proliferation and invasion in human pancreatic cancer cells. Down-regulation of PDX-1 expression inhibits pancreatic cancer cell growth in vitro and in vivo, implying its use as a potential therapeutic target for the treatment of pancreatic cancer.


Asunto(s)
Proteínas de Homeodominio/antagonistas & inhibidores , Proteínas de Homeodominio/genética , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/terapia , Transactivadores/antagonistas & inhibidores , Transactivadores/genética , Animales , Secuencia de Bases , Biomarcadores de Tumor/antagonistas & inhibidores , Biomarcadores de Tumor/genética , Línea Celular Tumoral , Proliferación Celular , Humanos , Islotes Pancreáticos/fisiopatología , Masculino , Ratones , Ratones SCID , Datos de Secuencia Molecular , Invasividad Neoplásica , Trasplante de Neoplasias , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas/fisiopatología , Interferencia de ARN , ARN Interferente Pequeño/genética , Transfección , Trasplante Heterólogo
8.
J Surg Res ; 144(1): 8-16, 2008 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17583748

RESUMEN

BACKGROUND: Transcription factor pancreatic duodenal homeobox-1 (PDX-1) is critical for beta-cell differentiation and insulin gene expression. In this study, we investigated the role of PDX-1 in ductal-to-islet cell transdifferentiation, islet cell apoptosis, and proliferation in addition to other regulators associated with these processes in two developing beta-cell models. MATERIALS AND METHODS: CAPAN-1 cells were cultured with the GLP-1 analogue Exendin-4 (Ex-4) to induce transdifferentiation to an insulin-producing phenotype. Expression patterns of PDX-1, somatostatin receptors (SSTR) 1, 2, and 5, p27, and p38 were analyzed. To model pancreatic regeneration in vivo, subtotal pancreatectomies were performed in rats and remnant pancreata were compared to sham laparotomy controls to determine islet size, morphology, apoptosis, and PDX-1 expression. RESULTS: In Ex-4-treated cells, PDX-1 expression increased 67% above basal levels within 24 h and was followed by a 10-fold decline in expression by the end of the study. Expression of cell-cycle inhibitor p27 was down-regulated by 81% at 24 h, while levels of the pro-apoptotic modulator p38 significantly increased 4-fold. When compared to controls, SSTR1 expression declined, while SSTR2 and SSTR5 expression were significantly up-regulated in treated cells. Immunofluorescence of pancreatic remnants following subtotal pancreatectomy revealed increased PDX-1 staining at 24 h followed by a significant decline at 72 h post-pancreatectomy. CONCLUSION: GLP-1 analogue Ex-4 resulted in up-regulation of PDX-1 in CAPAN-1 cells and PDX-1 was up-regulated in proliferating islets following subtotal pancreatectomy in rats. The increase was seen in the first 24 h. These findings suggest a possible relationship between PDX-1 and the state of islet proliferation, islet-to-ductal transdifferentiation, apoptosis, and the expression of SSTRs.


Asunto(s)
Proteínas de Homeodominio/genética , Islotes Pancreáticos/citología , Islotes Pancreáticos/fisiología , Regeneración/fisiología , Transactivadores/genética , Animales , Apoptosis/efectos de los fármacos , Apoptosis/fisiología , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/fisiología , División Celular/efectos de los fármacos , División Celular/fisiología , Células Cultivadas , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/genética , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/metabolismo , Exenatida , Proteínas de Homeodominio/metabolismo , Humanos , Hipoglucemiantes/farmacología , Técnicas In Vitro , Insulina , Islotes Pancreáticos/efectos de los fármacos , Masculino , Modelos Animales , Pancreatectomía , Péptidos/farmacología , Proinsulina/genética , Proinsulina/metabolismo , Precursores de Proteínas/genética , Precursores de Proteínas/metabolismo , Ratas , Ratas Sprague-Dawley , Receptores de Somatostatina/genética , Receptores de Somatostatina/metabolismo , Regeneración/efectos de los fármacos , Transactivadores/metabolismo , Ponzoñas/farmacología
9.
Am J Physiol Gastrointest Liver Physiol ; 292(6): G1520-33, 2007 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-17290010

RESUMEN

Members of the transforming growth factor-beta (TGF-beta) family have been shown to play an important role in the regulation of gut epithelial gene expression. We have used the intestinal alkaline phosphatase (IAP) and intestinal fatty acid binding protein (IFABP) promoters to dissect the mechanisms by which TGF-beta1 signaling regulates gut epithelial gene expression. TGF-beta signaling alone was not sufficient for activation of IAP and IFABP promoters. However, TGF-beta signaling cooperated with the gut epithelial transcription factor GATA4 to synergistically activate IAP and IFABP promoters. Coexpression of GATA4 along with the TGF-beta1 signal transducing downstream effectors such as Smad2, 3, and 4 resulted in synergistic activation of both IAP and IFABP promoters. This synergistic activation was reduced by simultaneous expression of dominant-negative Smad4. -40 and -89 GATA binding sites in the IFABP promoter were required for the synergistic activation by Smad2, 3, and 4 and GATA4. GATA4 and Smad2, 3, and 4 physically associated with each other and this interaction was mediated through the MH2 domain of Smad2, 3, and 4 and the second zinc finger and the COOH-terminal basic domain of GATA4. The COOH-terminal activation domain and the Smad-interacting second zinc finger domain of GATA4 were required for the synergistic activation of the IFABP promoter. Naturally occurring oncogenic mutations within the GATA4-interacting MH2 domain of Smad2 reduced the coactivation of IFABP promoter by Smad2 and GATA4. Our results suggest that the TGF-beta signaling regulates gut epithelial gene expression by targeting GATA4.


Asunto(s)
Células Epiteliales/metabolismo , Proteínas de Unión a Ácidos Grasos/metabolismo , Factor de Transcripción GATA4/metabolismo , Expresión Génica , Mucosa Intestinal/metabolismo , Regiones Promotoras Genéticas , Transducción de Señal , Factor de Crecimiento Transformador beta1/metabolismo , Receptores de Activinas Tipo I/metabolismo , Fosfatasa Alcalina , Animales , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/metabolismo , Células Epiteliales/patología , Proteínas de Unión a Ácidos Grasos/genética , Factor de Transcripción GATA4/química , Factor de Transcripción GATA4/genética , Proteínas Ligadas a GPI , Genes Reporteros , Células HCT116 , Haplorrinos , Humanos , Mucosa Intestinal/patología , Luciferasas , Mutación , Unión Proteica , Proteínas Serina-Treonina Quinasas , Estructura Terciaria de Proteína , Interferencia de ARN , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Receptor Tipo I de Factor de Crecimiento Transformador beta , Receptores de Factores de Crecimiento Transformadores beta/metabolismo , Transducción de Señal/genética , Proteína Smad2/metabolismo , Proteína smad3/metabolismo , Proteína Smad4/metabolismo , Transfección , Factor de Crecimiento Transformador beta1/genética , Dedos de Zinc
10.
Proc Natl Acad Sci U S A ; 104(1): 157-62, 2007 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-17185421

RESUMEN

Smooth muscle alpha-actin gene activity appears in promyocardial cells well before cardiac myocyte differentiation and is down-regulated during the onset of rhythmic contractility and cardiac morphogenesis. The levels of LIM-only CRP2 correlated well with smooth muscle gene activity. Cardiomyocyte-specific expression of CRP2 in transgenic mice showed robust expression of smooth muscle cell-specific transcripts and protein filaments in the adult heart. Protein transduction of a recombinant CRP2 protein, fused to the protein transduction domain of HIV, into neonatal heart cells induced de novo synthesis of smooth muscle cell-specific transcripts and proteins. The LIM zinc fingers in CRP2 were found to collaborate with Brg1 of the SNF/SWI complexes, recruited serum response factor, and remodeled smooth muscle target gene chromatin through histone acetylation. CRP2 may have a cytoskeletal role, but as a nuclear protein, CRP2 acted as a potent transcription coadaptor that remodeled silent cardiac myocyte chromatin and directed serum response factor-dependent smooth muscle gene activity.


Asunto(s)
Regulación de la Expresión Génica , Proteínas Musculares/fisiología , Músculo Liso/metabolismo , Miocitos Cardíacos/metabolismo , Proteínas Nucleares/fisiología , Actinas/metabolismo , Transporte Activo de Núcleo Celular , Animales , Diferenciación Celular , Núcleo Celular/metabolismo , Corazón/embriología , Proteínas con Dominio LIM , Ratones , Ratones Transgénicos , Ratas , Ratas Sprague-Dawley , Activación Transcripcional
11.
J Biol Chem ; 280(37): 32531-8, 2005 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-15929941

RESUMEN

Serum response factor (SRF) homozygous-null embryos from our backcross of SRF(LacZ/)(+) "knock-in" mice failed to gastrulate and form mesoderm, similar to the findings of an earlier study (Arsenian, S., Weinhold, B., Oelgeschlager, M., Ruther, U., and Nordheim, A. (1998) EMBO J. 17, 6289-6299). Our use of embryonic stem cells provided a model system that could be used to investigate the specification of multiple embryonic lineages, including cardiac myocytes. We observed the absence of myogenic alpha-actins, SM22alpha, and myocardin expression and the failure to form beating cardiac myocytes in aggregated SRF null embryonic stem cells, whereas the appearance of transcription factors Nkx2-5 and GATA4 were unaffected. To study the role of SRF during heart organogenesis, we then performed cardiac-specific ablation of SRF by crossing the transgenic alpha-myosin heavy chain Cre recombinase line with SRF LoxP-engineered mice. Cardiac-specific ablation of SRF resulted in embryonic lethality due to cardiac insufficiency during chamber maturation. Conditional ablation of SRF also reduced cell survival concomitant with increased apoptosis and reduced cellularity. Significant reductions in SRF (> or =95%), atrial naturetic factor (> or =80%), and cardiac (> or =60%), skeletal (> or =90%), and smooth muscle (> or =75%) alpha-actin transcripts were also observed in the cardiac-conditional knock-out heart. This was consistent with the idea that SRF directs de novo cardiac and smooth muscle gene activities. Finally, quantitation of the knock-in LacZ reporter gene transcripts in the hearts of cardiac-conditional knock-out embryos revealed an approximately 30% reduction in gene activity, indicating SRF gene autoregulation during cardiogenesis.


Asunto(s)
Regulación de la Expresión Génica , Mutagénesis Sitio-Dirigida , Factor de Respuesta Sérica/genética , Factor de Respuesta Sérica/metabolismo , Transcripción Genética , Actinas/metabolismo , Animales , Apoptosis , Linaje de la Célula , Proteínas de Unión al ADN/metabolismo , Regulación hacia Abajo , Embrión de Mamíferos/metabolismo , Factor de Transcripción GATA4 , Genes Reporteros , Proteína Homeótica Nkx-2.5 , Proteínas de Homeodominio/metabolismo , Inmunohistoquímica , Hibridación in Situ , Etiquetado Corte-Fin in Situ , Operón Lac , Ratones , Ratones Noqueados , Ratones Transgénicos , Microscopía Fluorescente , Músculo Esquelético/metabolismo , Miocardio/patología , Miocitos Cardíacos/metabolismo , Proteínas Nucleares/metabolismo , Unión Proteica , ARN Mensajero/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Células Madre/citología , Células Madre/metabolismo , Factores de Tiempo , Transactivadores/metabolismo , Factores de Transcripción/metabolismo , Transgenes , beta-Galactosidasa/metabolismo
12.
J Biol Chem ; 280(12): 11816-28, 2005 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-15591049

RESUMEN

We tested the idea that T-box factors direct serum response factor (SRF) gene activity early in development. Analysis of SRF-LacZ "knock-in" mice showed highly restricted expression in early embryonic cardiac and skeletal muscle mesoderm and neuroectoderm. Examination of the SRF gene for regulatory regions by linking the promoter and 5'-flanking sequences, up to 5.5 kb, failed to target LacZ transgene activity to the heart and the tail pre-somitic mesenchyme. However, linkage of a minimal SRF promoter with the SRF 3'-untranslated region (UTR), inundated with multimeric T-box binding sites (TBEs), restored robust reporter gene activity to embryonic heart and tail. Finer dissection of the 3'-UTR to a small cluster of TBEs also stimulated transgene activity in the cardiac forming region and the tail, however, when the TBEs contained within these DNA sequences were mutated, preventing Tbx binding, transgene activity was lost. Tbx2, Tbx5, and the cardiac-enriched MYST family histone acetyltransferase TIP60, were observed to be mutual interactive cofactors through the TIP60 zinc finger and the T-box of the Tbx factors. In SRF-null ES cells, TIP60, Tbx2, and Tbx5 were sufficient to stimulate co-transfected SRF reporter activity, however this activity required the presence of the SRF 3'-UTR. SRF gene transactivation was blocked by two distinct TIP60 mutants, in which either the histone acetyltransferase domain was inactivated or the Zn finger-protein binding domain was excised. Our study supports the idea that SRF embryonic cardiac gene expression is dependent upon the SRF 3'-UTR enhancer, Tbx2, Tbx5, and TIP60 histone acetyltransferase activity.


Asunto(s)
Corazón/embriología , Factor de Respuesta Sérica/genética , Proteínas de Dominio T Box/genética , Regiones no Traducidas 3' , Región de Flanqueo 5' , Acetiltransferasas/fisiología , Animales , Secuencia de Bases , Elementos de Facilitación Genéticos , Regulación del Desarrollo de la Expresión Génica , Histona Acetiltransferasas , Mesodermo/metabolismo , Ratones , Datos de Secuencia Molecular , Músculo Esquelético/embriología , Músculo Esquelético/metabolismo , Regiones Promotoras Genéticas , Activación Transcripcional
13.
J Biol Chem ; 280(9): 7786-92, 2005 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-15623502

RESUMEN

Androgen receptor (AR) induced precocious myogenesis in culture and myogenic specified gene activity. Increased levels of AR expression in replicating C2C12 myoblasts stimulated fusion into post-differentiated multinucleated myotubes and the appearance of skeletal alpha-actin transcripts, even in the absence of ligand. Furthermore, AR activated the skeletal alpha-actin promoter, which lacks GRE sites, in co-transfected C2C12 cells. AR co-activation of the skeletal alpha-actin promoter required co-expressed full-length serum response factor (SRF). In vitro, AR associated with SRF and was recruited by SRF to a alpha-actin promoter SRF binding site. Our data suggest that AR is capable of activating myogenic genes devoid of consensus AR binding sites via its recruitment by the myogenic enriched transcription factor, SRF.


Asunto(s)
Receptores Androgénicos/química , Factor de Respuesta Sérica/metabolismo , Actinas/metabolismo , Animales , Sitios de Unión , Diferenciación Celular , Línea Celular , Células Cultivadas , ADN/metabolismo , Cartilla de ADN/química , Glutatión Transferasa/metabolismo , Humanos , Inmunoprecipitación , Ligandos , Ratones , Músculo Esquelético/metabolismo , Músculos/citología , Plásmidos/metabolismo , Regiones Promotoras Genéticas , Unión Proteica , Estructura Terciaria de Proteína , Transporte de Proteínas , ARN Mensajero/metabolismo , Receptores Androgénicos/metabolismo , Factores de Tiempo , Transcripción Genética , Transfección
14.
J Surg Res ; 121(1): 92-100, 2004 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-15313381

RESUMEN

BACKGROUND: Serum response factor (SRF) is a transcription factor that plays an important role in cellular differentiation and cell cycle regulation. SRF function is regulated in part by alternative splicing. Little is known about the expression or role of these alternatively spliced isoforms during tumorigenesis. We hypothesized that there is a change in the splice variants during intestinal tumorigenesis and that this change promotes the tumor phenotype. MATERIALS AND METHODS: SRF expression was determined by Western blotting of benign intestinal cells and human colon cancer cell lines. To determine the effect of alternative splicing of SRF on intestinal growth and proliferation, the predominant alternatively spliced isoform of SRF that we identified in colon cancer cells, SRFDelta5, was transfected into IEC-6 cells. IEC-6 and IEC-6SRFDelta5 cells were plated and cell numbers were determined at four time points. RESULTS: Western blotting demonstrates that full-length SRF is the predominant form of SRF in rat IEC-6 cells, normal human colonic mucosa, and HT-29 cells, derived from a well-differentiated human colonic adenocarcinoma. In the colon cancer cell lines derived from poorly differentiated tumors (WiDr, HCT 116, LoVo, and SW480), SRFDelta5 is the predominant isoform expressed. There was a significant increase in cell survival in IEC-6 cells transfected with SRFDelta5 compared to parental cells. CONCLUSION: Our data demonstrate that an alternatively spliced isoform of SRF, SRFDelta5, is expressed in human colon cancer cell lines. Additionally, these data demonstrate that expression of SRFDelta5 may contribute to the tumor phenotype by affecting cell survival. This is the first study to document a change in expression of the alternatively spliced isoform of SRF in human malignancy.


Asunto(s)
Empalme Alternativo , Neoplasias del Colon/metabolismo , Factor de Respuesta Sérica/genética , Animales , Apoptosis , Línea Celular Tumoral , Supervivencia Celular , Transformación Celular Neoplásica , Humanos , Ratas
15.
Dev Cell ; 4(1): 107-18, 2003 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-12530967

RESUMEN

Cysteine-rich LIM-only proteins, CRP1 and CRP2, expressed during cardiovascular development act as bridging molecules that associate with serum response factor and GATA proteins. SRF-CRP-GATA complexes strongly activated smooth muscle gene targets. CRP2 was found in the nucleus during early stages of coronary smooth muscle differentiation from proepicardial cells. A dominant-negative CRP2 mutant blocked proepicardial cells from differentiating into smooth muscle cells. Together with SRF and GATA proteins, CRP1 and CRP2 converted pluripotent 10T1/2 fibroblasts into smooth muscle cells, while muscle LIM protein CRP3 inhibited the conversion. Thus, LIM-only proteins of the CRP family play important roles in organizing multiprotein complexes, both in the cytoplasm, where they participate in cytoskeletal remodeling, and in the nucleus, where they strongly facilitate smooth muscle differentiation.


Asunto(s)
Proteínas Aviares , Proteína beta Potenciadora de Unión a CCAAT/metabolismo , Proteínas Portadoras/metabolismo , Diferenciación Celular , Músculo Liso Vascular/citología , Músculo Liso Vascular/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Animales , Proteína beta Potenciadora de Unión a CCAAT/química , Proteína beta Potenciadora de Unión a CCAAT/genética , Sistema Cardiovascular/citología , Sistema Cardiovascular/embriología , Proteínas Portadoras/química , Proteínas Portadoras/genética , Embrión de Pollo , Proteínas de Unión al ADN/metabolismo , Ensayo de Cambio de Movilidad Electroforética , Factores de Unión al ADN Específico de las Células Eritroides , Regulación del Desarrollo de la Expresión Génica , Hibridación in Situ , Proteínas con Dominio LIM , Sustancias Macromoleculares , Regiones Promotoras Genéticas/genética , Unión Proteica , ARN Mensajero/genética , ARN Mensajero/metabolismo , Factor de Respuesta Sérica/metabolismo , Factores de Transcripción/metabolismo , Activación Transcripcional
16.
Brain Res Dev Brain Res ; 138(1): 81-6, 2002 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-12234660

RESUMEN

Serum response factor (SRF), a transcription factor known to be essential for early embryonic development as well as post-natal regulation of both cellular proliferation and myogenic differentiation, is expressed broadly in neurons within the adult mammalian central nervous system (CNS). The function of SRF within the developing CNS is not well established, but it is likely to play an important role in neuraxial development and neuronal function, since many of its known target genes (e.g., c-fos) and transcriptional partners (e.g., Elk-1) are also highly expressed in neurons. Immunohistochemical survey of the post-natal developing rat brain revealed a progressive increase in SRF immunoreactivity in neurons of the cerebral and cerebellar cortices, and in selective subcortical regions from birth (P0) through post-natal day 28 (P28). SRF immunoreactivity stabilized from P28 into adulthood. A few loci, such as the nucleus of cranial nerve VII, showed the reverse expression pattern (strong immunoreactivity at P0-P7, declining by P28). The developmental expression pattern of SRF overlaps significantly with that of myotonic dystrophy protein kinase, a potential upstream regulator, and of the LIM-only genes Lmo1, Lmo2 and Lmo3, whose products belong to a family of proteins known to be strong positive regulators of SRF's transcriptional activity. These data suggest that SRF has a significant function in the early post-natal development of the CNS.


Asunto(s)
Corteza Cerebral/química , Corteza Cerebral/crecimiento & desarrollo , Hipocampo/química , Hipocampo/crecimiento & desarrollo , Factor de Respuesta Sérica/análisis , Factores de Edad , Animales , Animales Recién Nacidos , Diferenciación Celular/fisiología , Movimiento Celular/fisiología , Corteza Cerebral/citología , Hipocampo/citología , Inmunohistoquímica , Neuronas/química , Neuronas/citología , Ratas
17.
J Biol Chem ; 277(8): 6287-95, 2002 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-11741973

RESUMEN

Transforming growth factor-beta induces a smooth muscle cell phenotype in undifferentiated mesenchymal cells. To elucidate the mechanism(s) of this phenotypic induction, we focused on the molecular regulation of smooth muscle-gamma-actin, whose expression is induced at late stages of smooth muscle differentiation and developmentally restricted to this lineage. Transforming growth factor-beta induced smooth muscle-gamma-actin protein, cytoskeletal localization, and mRNA expression in mesenchymal cells. Smooth muscle-gamma-actin promoter-luciferase reporter activity was enhanced by transforming growth factor-beta, and deletion analysis revealed that CArG box 2 in the promoter was necessary for this transcriptional activation. CArG motifs bind transcriptional activator serum response factor; gel shift analyses revealed increased binding of serum response factor-containing complexes to this site in response to transforming growth factor-beta, paralleled by increased serum response factor protein expression. Serum response factor expression was found to be up-regulated by transforming growth factor-beta via transcriptional activation of the gene and post-transcriptional regulation. Using mesenchymal cells stably transfected with wild type or dominant-negative serum response factor, we demonstrated that its expression is sufficient for induction of a smooth muscle phenotype in mesenchymal cells and is necessary for transforming growth factor-beta-mediated smooth muscle induction.


Asunto(s)
Músculo Liso/citología , Procesamiento Postranscripcional del ARN , Factor de Respuesta Sérica/genética , Transcripción Genética , Factor de Crecimiento Transformador beta/farmacología , Actinas/genética , Animales , Línea Celular , Citoesqueleto/metabolismo , Regulación de la Expresión Génica , Inmunohistoquímica , Músculo Liso/efectos de los fármacos , Músculo Liso/fisiología , Fenotipo , Plásmidos , Regiones Promotoras Genéticas , ARN Mensajero/genética , Activación Transcripcional , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...