Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
2.
Sci Rep ; 13(1): 15841, 2023 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-37740008

RESUMEN

Despite efforts to identify modulatory neuroprotective mechanisms of damaging ischemic stroke cascade signaling, a void remains on an effective potential therapeutic. The present study defines neuroprotection by very long-chain polyunsaturated fatty acid (VLC-PUFA) Elovanoid (ELV) precursors C-32:6 and C-34:6 delivered intranasally following experimental ischemic stroke. We demonstrate that these precursors improved neurological deficit, decreased T2WI lesion volume, and increased SMI-71 positive blood vessels and NeuN positive neurons, indicating blood-brain barrier (BBB) protection and neurogenesis modulated by the free fatty acids (FFAs) C-32:6 and C-34:6. Gene expression revealed increased anti-inflammatory and pro-homeostatic genes and decreases in expression of pro-inflammatory genes in the subcortex. Additionally, the FFAs elicit a comprehensive downregulation of inflammatory microglia/monocyte-derived macrophages and astrocyte-associated genes in the subcortical region. Functional analysis reveals inhibition of immune-related pathways and production of upstream molecules related to detrimental signaling events in post-stroke acute and subacute phases.


Asunto(s)
Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Humanos , Ácidos Grasos no Esterificados , Neuroprotección , Accidente Cerebrovascular/genética , Astrocitos
3.
Cell Mol Neurobiol ; 43(7): 3555-3573, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37270727

RESUMEN

Neuroprotection to attenuate or block the ischemic cascade and salvage neuronal damage has been extensively explored for treating ischemic stroke. However, despite increasing knowledge of the physiologic, mechanistic, and imaging characterizations of the ischemic penumbra, no effective neuroprotective therapy has been found. This study focuses on the neuroprotective bioactivity of docosanoid mediators: Neuroprotectin D1 (NPD1), Resolvin D1 (RvD1), and their combination in experimental stroke. Molecular targets of NPD1 and RvD1 are defined by following dose-response and therapeutic window. We demonstrated that treatment with NPD1, RvD1, and combination therapy provides high-grade neurobehavioral recovery and decreases ischemic core and penumbra volumes even when administered up to 6 h after stroke. The expression of the following genes was salient: (a) Cd163, an anti-inflammatory stroke-associated gene, was the most differentially expressed gene by NPD1+RvD1, displaying more than a 123-fold upregulation in the ipsilesional penumbra (Lisi et al., Neurosci Lett 645:106-112, 2017); (b) 100-fold upregulation takes place in astrocyte gene PTX3, a key regulator of neurogenesis and angiogenesis after cerebral ischemia (. Rodriguez-Grande et al., J Neuroinflammation 12:15, 2015); and (c) Tmem119 and P2y12, two markers of homeostatic microglia, were found to be enhanced by ten- and fivefold, respectively (Walker et al. Int J Mol Sci 21:678, 2020). Overall, we uncovered that protection after middle cerebral artery occlusion (MCAo) by the lipid mediators elicits expression of microglia and astrocyte-specific genes (Tmem119, Fcrls, Osmr, Msr1, Cd68, Cd163, Amigo2, Thbs1, and Tm4sf1) likely participating in enhancing homeostatic microglia, modulating neuroinflammation, promoting DAMP clearance, activating NPC differentiation and maturation, synapse integrity and contributing to cell survival.


Asunto(s)
Isquemia Encefálica , Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Humanos , Accidente Cerebrovascular Isquémico/metabolismo , Microglía/metabolismo , Astrocitos/metabolismo , Accidente Cerebrovascular/tratamiento farmacológico , Isquemia Encefálica/metabolismo
4.
Med Res Arch ; 11(1)2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36777192

RESUMEN

Despite displaying efficacy in experimental stroke studies, neuroprotection has failed in clinical trials. The translational difficulties include a limited methodological agreement between preclinical and clinical studies and the heterogeneity of stroke in humans compared to standardized strokes in animal models. Promising neuroprotective approaches based on a deeper understanding of the complex pathophysiology of ischemic stroke, such as blocking pro-inflammatory pathways plus pro-survival mediators, are now evaluated in preclinical studies. Combinatorial therapy has become increasingly attractive in recent years as recognizing the complexity of stroke progression becomes evident. The paper aimed to test the hypothesis that blocking pro-inflammatory platelet-activating factor receptor (PAF-R) with LAU-0901 plus administering a selected docosanoid, aspirin-triggered neuroprotectin D1 (AT-NPD1), which activates cell-survival pathways after middle cerebral artery occlusion (MCAo), would lead to neurological recovery. We have demonstrated that LAU-0901 plus AT-NPD1 treatment affords high-grade neuroprotection in MCAo, equaling or exceeding that afforded by LAU-0901 or AT-NPD1 alone at considerably moderate doses, and it has a broad therapeutic window extending to 6 hours after stroke onset.

5.
Cell Mol Neurobiol ; 43(3): 1077-1096, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35622188

RESUMEN

Wnt5a triggers inflammatory responses and damage via NFkB/p65 in retinal pigment epithelial (RPE) cells undergoing uncompensated oxidative stress (UOS) and in experimental ischemic stroke. We found that Wnt5a-Clathrin-mediated uptake leads to NFkB/p65 activation and that Wnt5a is secreted in an exosome-independent fashion. We uncovered that docosahexaenoic acid (DHA) and its derivative, Neuroprotectin D1 (NPD1), upregulate c-Rel expression that, as a result, blunts Wnt5a abundance by competing with NFkB/p65 on the Wnt5a promoter A. Wnt5a increases in ischemic stroke penumbra and blood, while DHA reduces Wnt5a abundance with concomitant neuroprotection. Peptide inhibitor of Wnt5a binding, Box5, is also neuroprotective. DHA-decreased Wnt5a expression is concurrent with a drop in NFkB-driven inflammatory cytokine expression, revealing mechanisms after stroke, as in RPE cells exposed to UOS. Limiting the Wnt5a activity via Box5 reduces stroke size, suggesting neuroprotection pertinent to onset and progression of retinal degenerations and stroke consequences. NPD1 disrupts Wnt5a feedback loop at two sites: (1) decreasing FZD5, thus Wnt5a internalization, and (2) by enhancing cREL activity, which competes with p65/NFkB downstream endocytosis. As a result, Wnt5a expression is reduced, and so is its inflammatory signaling in RPE cells and neurons in ischemic stroke.


Asunto(s)
Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Humanos , Ácidos Docosahexaenoicos/farmacología , Ácidos Docosahexaenoicos/uso terapéutico , Neuroprotección , Accidente Cerebrovascular/tratamiento farmacológico , Accidente Cerebrovascular/metabolismo , Proteína Wnt-5a , Receptores Frizzled/metabolismo
7.
J Stroke Cerebrovasc Dis ; 31(8): 106585, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35717719

RESUMEN

OBJECTIVE: We tested the hypothesis that blocking pro-inflammatory platelet-activating factor receptor (PAFR) with LAU-0901 (LAU) plus administering a selected docosanoid, aspirin-triggered neuroprotectin D1 (AT-NPD1), which activates cell-survival pathways after middle cerebral artery occlusion (MCAo), would lead to neurological recovery. Dose-response and therapeutic window were investigated. MATERIALS AND METHODS: Male SD rats were subjected to 2 hours of MCAo. Behavior testing (days 1-7) and ex vivo MRI on day 7 were conducted. In dose-response, rats were treated with LAU (45 and 60 mg/kg; IP), AT-NPD1 (111, 222, 333 µg/kg; IV), LAU+AT-NPD1 (LAU at 3 hours and AT-NPD1 at 3.15 hours) or vehicle. In the therapeutic window, vehicle, LAU (60 mg/kg), AT-NPD1 (222 µg/kg), and LAU+AT-NPD1 were administered at 3, 4, 5, and 6 hours after onset of MCAo. RESULTS: LAU and AT-NPD1 treatments alone improved behavior by 40-42% and 20-30%, respectively, and LAU+AT-NPD1 by 40% compared to the vehicle group. T2-weighted imaging (T2WI) volumes were reduced with all doses of LAU and AT-NPD1 by 73-90% and 67-83% and LAU+AT-NPD1 by 94% compared to vehicle. In the therapeutic window, LAU+AT-NPD1, when administered at 3, 4, 5, and 6 hours, improved behavior by 50, 56, 33, and 26% and reduced T2WI volumes by 93, 90, 82, and 84% compared to vehicle. CONCLUSIONS: We have shown here for the first time that LAU plus AT-NPD1 treatment affords high-grade neuroprotection in MCAo, equaling or exceeding that afforded by LAU or AT-NPD1 alone at considerably moderate doses. It has a broad therapeutic window extending to 6 hours after stroke onset.


Asunto(s)
Accidente Cerebrovascular Isquémico , Fármacos Neuroprotectores , Accidente Cerebrovascular , Animales , Aspirina/uso terapéutico , Infarto de la Arteria Cerebral Media/diagnóstico por imagen , Infarto de la Arteria Cerebral Media/tratamiento farmacológico , Masculino , Neuroprotección , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Ratas , Ratas Sprague-Dawley , Accidente Cerebrovascular/diagnóstico por imagen , Accidente Cerebrovascular/tratamiento farmacológico , Accidente Cerebrovascular/etiología
8.
J Pharmacol Exp Ther ; 380(1): 47-53, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34728560

RESUMEN

Ruthenium compounds, nitric oxide donors in biologic systems, have emerged as a promising therapeutic alternative to conventional drugs in anticancer chemotherapy and as a potential neuroprotective agent with fewer cytotoxic effects. This minireview summarizes promising studies with ruthenium complexes and their roles in cancer, neuroinflammation, neurovascular, and neurodegenerative diseases. The up-to-date evidence supports that ruthenium-based compounds have beneficial effects against gliomas and other types of brain cancers, reduce motor symptoms in models of cerebral ischemia-reperfusion, and may act in the control of nociceptive and inflammatory events, such as those seen in early Alzheimer's disease. More studies are needed to fill many current knowledge gaps about the intricate and complex biologic effects and therapeutic-related mechanisms of ruthenium, stimulating further research. SIGNIFICANCE STATEMENT: This minireview summarizes studies addressing the role of ruthenium compounds on neurological illnesses, focusing on brain cancer and neurovascular and neurodegenerative diseases. No such review is available in the literature.


Asunto(s)
Antineoplásicos/uso terapéutico , Neoplasias Encefálicas/tratamiento farmacológico , Enfermedades Neurodegenerativas/tratamiento farmacológico , Fármacos Neuroprotectores/uso terapéutico , Donantes de Óxido Nítrico/uso terapéutico , Compuestos de Rutenio/uso terapéutico , Animales , Neoplasias Encefálicas/metabolismo , Humanos , Enfermedades Neurodegenerativas/metabolismo
9.
Nutr Rev ; 80(5): 1001-1012, 2022 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-34406390

RESUMEN

Apolipoprotein E plays a crucial role in cholesterol metabolism. The immunomodulatory functions of the human polymorphic APOE gene have gained particular interest because APOE4, a well-recognized risk factor for late-onset Alzheimer's disease, has also been recently linked to increased risk of COVID-19 infection severity in a large UK biobank study. Although much is known about apoE functions in the nervous system, much less is known about APOE polymorphism effects on malnutrition and enteric infections and the consequences for later development in underprivileged environments. In this review, recent findings are summarized of apoE's effects on intestinal function in health and disease and the role of APOE4 in protecting against infection and malnutrition in children living in unfavorable settings, where poor sanitation and hygiene prevail, is highlighted. The potential impact of APOE4 on later development also is discussed and gaps in knowledge are identified that need to be addressed to protect children's development under adverse environments.


Asunto(s)
Apolipoproteína E4 , Enfermedad Crónica , Desnutrición , Enfermedad de Alzheimer , Apolipoproteína E4/genética , Apolipoproteína E4/metabolismo , Apolipoproteínas E/genética , Niño , Humanos , Desnutrición/complicaciones
10.
Front Pharmacol ; 12: 746470, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34630114

RESUMEN

Glioblastoma multiforme (GBM) is an aggressive, highly proliferative, invasive brain tumor with a poor prognosis and low survival rate. The current standard of care for GBM is chemotherapy combined with radiation following surgical intervention, altogether with limited efficacy, since survival averages 18 months. Improvement in treatment outcomes for patients with GBM requires a multifaceted approach due to the dysregulation of numerous signaling pathways. Recently emerging therapies to precisely modulate tumor angiogenesis, inflammation, and oxidative stress are gaining attention as potential options to combat GBM. Using a mouse model of GBM, this study aims to investigate Avastin (suppressor of vascular endothelial growth factor and anti-angiogenetic treatment), LAU-0901 (a platelet-activating factor receptor antagonist that blocks pro-inflammatory signaling), Elovanoid; ELV, a novel pro-homeostatic lipid mediator that protects neural cell integrity and their combination as an alternative treatment for GBM. Female athymic nude mice were anesthetized with ketamine/xylazine, and luciferase-modified U87MG tumor cells were stereotactically injected into the right striatum. On post-implantation day 13, mice received one of the following: LAU-0901, ELV, Avastin, and all three compounds in combination. Bioluminescent imaging (BLI) was performed on days 13, 20, and 30 post-implantation. Mice were perfused for ex vivo MRI on day 30. Bioluminescent intracranial tumor growth percentage was reduced by treatments with LAU-0901 (43%), Avastin (77%), or ELV (86%), individually, by day 30 compared to saline treatment. In combination, LAU-0901/Avastin, ELV/LAU-0901, or ELV/Avastin had a synergistic effect in decreasing tumor growth by 72, 92, and 96%, respectively. Additionally, tumor reduction was confirmed by MRI on day 30, which shows a decrease in tumor volume by treatments with LAU-0901 (37%), Avastin (67%), or ELV (81.5%), individually, by day 30 compared to saline treatment. In combination, LAU-0901/Avastin, ELV/LAU-0901, or ELV/Avastin had a synergistic effect in decreasing tumor growth by 69, 78.7, and 88.6%, respectively. We concluded that LAU-0901 and ELV combined with Avastin exert a better inhibitive effect in GBM progression than monotherapy. To our knowledge, this is the first study that demonstrates the efficacy of these novel therapeutic regimens in a model of GBM and may provide the basis for future therapeutics in GBM patients.

11.
Cancer Metastasis Rev ; 40(3): 643-647, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34519960

RESUMEN

Glioblastoma multiforme (GBM) is the most invasive type of glial tumor with poor overall survival, despite advances in surgical resection, chemotherapy, and radiation. One of the main challenges in treating GBM is related to the tumor's location, complex and heterogeneous biology, and high invasiveness. To meet the demand for oxygen and nutrients, growing tumors induce new blood vessels growth. Antibodies directed against vascular endothelial growth factor (VEGF), which promotes angiogenesis, have been developed to limit tumor growth. Bevacizumab (Avastin), an anti-VEGF monoclonal antibody, is the first approved angiogenesis inhibitor with therapeutic promise. However, it has limited efficacy, likely due to adaptive mutations in GBM, leading to overall survival compared to the standard of care in GBM patients. Molecular connections between angiogenesis, inflammation, oxidative stress pathways, and the development of gliomas have been recognized. Improvement in treatment outcomes for patients with GBM requires a multifaceted approach due to the converging dysregulation of signaling pathways. While most GBM clinical trials focus on "anti-angiogenic" modalities, stimulating inflammation resolution is a novel host-centric therapeutic avenue. The selective therapeutic possibilities for targeting the tumor microenvironment, specifically angiogenic and inflammatory pathways expand. So, a combination of agents aiming to interfere with several mechanisms might be beneficial to improve outcomes. Our approach might also be combined with other therapies to enhance sustained effectiveness. Here, we discuss Suramab (anti-angiogenic), LAU-0901 (a platelet-activating factor receptor antagonist), Elovanoid (ELV; a novel lipid mediator), and their combination as potential alternatives to contain GBM growth and invasiveness.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Inhibidores de la Angiogénesis/uso terapéutico , Bevacizumab/uso terapéutico , Neoplasias Encefálicas/tratamiento farmacológico , Glioblastoma/tratamiento farmacológico , Homeostasis , Humanos , Neovascularización Patológica/tratamiento farmacológico , Microambiente Tumoral , Factor A de Crecimiento Endotelial Vascular/uso terapéutico
12.
CNS Neurosci Ther ; 26(11): 1155-1167, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32757264

RESUMEN

AIMS: Mesencephalic astrocyte-derived neurotrophic factor (MANF) is a secretory neurotrophic factor protein that promotes repair after neuronal injury. The microglia cell surface receptor (triggering receptor expressed on myeloid cells-2; TREM2) regulates the production of pro- and antiinflammatory mediators after stroke. Here, we study MANF and TREM2 expression after middle cerebral artery occlusion (MCAo) and explore if docosahexaenoic acid (DHA) treatment exerts a potentiating effect. METHODS: We used 2 hours of the MCAo model in rats and intravenously administered DHA or vehicle at 3 hours after the onset of MCAo. Neurobehavioral assessment was performed on days 1, 3, 7, and 14; MANF and TREM2 expression was measured by immunohistochemistry and Western blotting. RESULTS: MANF was upregulated in neurons and astrocytes on days 1, 7, and 14, and TREM2 was expressed on macrophages in the ischemic penumbra and dentate gyrus (DG) on days 7 and 14. DHA improved neurobehavioral recovery, attenuated infarct size on days 7 and 14, increased MANF and decreased TREM2 expression in ischemic core, penumbra, DG, and enhanced neurogenesis on Day 14. CONCLUSION: MANF and TREM2 protein abundance is robustly increased after MCAo, and DHA treatment potentiated MANF abundance, decreased TREM2 expression, improved neurobehavioral recovery, reduced infarction, and provided enhanced neuroprotection.


Asunto(s)
Isquemia Encefálica/metabolismo , Ácidos Docosahexaenoicos/administración & dosificación , Accidente Cerebrovascular Isquémico/metabolismo , Glicoproteínas de Membrana/biosíntesis , Factores de Crecimiento Nervioso/biosíntesis , Neurogénesis/efectos de los fármacos , Receptores Inmunológicos/biosíntesis , Administración Intravenosa , Animales , Isquemia Encefálica/tratamiento farmacológico , Infarto Cerebral/tratamiento farmacológico , Infarto Cerebral/metabolismo , Accidente Cerebrovascular Isquémico/tratamiento farmacológico , Masculino , Glicoproteínas de Membrana/antagonistas & inhibidores , Factores de Crecimiento Nervioso/agonistas , Neurogénesis/fisiología , Ratas , Ratas Sprague-Dawley , Receptores Inmunológicos/antagonistas & inhibidores
13.
Brain Circ ; 6(4): 260-268, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33506149

RESUMEN

OBJECTIVE: Acute ischemic stroke triggers complex neurovascular, neuroinflammatory, and synaptic alterations. This study explores whether blocking pro-inflammatory platelet-activating factor receptor (PAF-R) plus selected docosanoids after middle cerebral artery occlusion (MCAo) would lead to neurological recovery. The following small molecules were investigated: (a) LAU-0901, a PAF-R antagonist that blocks pro-inflammatory signaling; and (b) derivatives of docosahexaenoic acid (DHA), neuroprotectin D1 (NPD1), and aspirin-triggered NPD1 (AT-NPD1), which activates cell survival pathways and are exert potent anti-inflammatory activity in the brain. MATERIALS AND METHODS: Sprague-Dawley rats received 2 h MCAo and LAU-0901 (30 or 60 mg/kg, 2 h after stroke), NPD1, and AT-NPD1 (333 µg/kg), DHA (5 mg/kg), and their combination were administered intravenous at 3 h after stroke. Behavior testing and ex vivo magnetic resonance imaging were conducted on day 3 or 14 to assess lesion characteristics and lipidomic analysis on day 1. Series 1 (LAU-0901 + NPD1, 14d), Series 2 (LAU-0901 + AT-NPD1, 3d), and Series 3 (LAU-0901 + DHA, 1d). RESULTS: All combinatory groups improved behavior compared to NPD1, AT-NPD1, or DHA treatments alone. Total lesion volumes were reduced with LAU-0901 + NPD1 by 62% and LAU-0901 + AT-NPD1 by 90% treatments versus vehicle groups. LAU-0901 and LAU-0901 + DHA increased the production of vasoactive lipid mediators (prostaglandins: PGE2, PGF2- α, 6-keto-PGF1- α, and PGD2) as well an inflammatory regulating mediator hydroxyoctadecadienoic acid. In contrast, LAU-0901 and LAU-0901 + DHA decreased the production of 12-hydroxyeicosatetraenoic acid, a pro-inflammatory mediator. CONCLUSION: Combination therapy with LAU-0901 and selected docosanoids is more effective than the single therapy, affording synergistic neuroprotection, with restored pro-homeostatic lipid mediators and improved neurological recovery. Altogether, our findings support the combinatory therapy as the basis for future therapeutics for ischemic stroke.

14.
Mol Neurobiol ; 55(8): 7090-7106, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29858774

RESUMEN

Docosahexaenoic acid (DHA) and neuroprotectin D1 (NPD1) are neuroprotective after experimental ischemic stroke. To explore underlying mechanisms, SD rats underwent 2 h of middle cerebral artery occlusion (MCAo) and treated with DHA (5 mg/kg, IV) or NPD1 (5 µg/per rat, ICV) and vehicles 1 h after. Neuro-behavioral assessments was conducted on days 1, 2, and 3, and on week 1, 2, 3, or 4. BrdU was injected on days 4, 5, and 6, immunohistochemistry was performed on week 2 or 4, MRI on day 7, and lipidomic analysis at 4 and 5 h after onset of stroke. DHA improved short- and long-term behavioral functions and reduced cortical, subcortical, and total infarct volumes (by 42, 47, and 31%, respectively) after 2 weeks and reduced tissue loss by 50% after 4 weeks. DHA increased the number of BrdU+/Ki-67+, BrdU+/DCX+, and BrdU+/NeuN+ cells in the cortex, subventricular zone, and dentate gyrus and potentiated NPD1 synthesis in the penumbra at 5 h after MCAo. NPD1 improved behavior, reduced lesion volumes, protected ischemic penumbra, increased NeuN, GFAP, SMI-71-positive cells and vessels, axonal regeneration in the penumbra, and attenuated blood-brain barrier (BBB) after MCAo. We conclude that docosanoid administration increases neurogenesis and angiogenesis, activates NPD1 synthesis in the penumbra, and diminishes BBB permeability, which correlates to long-term neurobehavioral recovery after experimental ischemic stroke.


Asunto(s)
Conducta Animal , Barrera Hematoencefálica/patología , Isquemia Encefálica/patología , Ácidos Grasos/farmacología , Neovascularización Fisiológica , Neurogénesis , Accidente Cerebrovascular/patología , Animales , Axones/patología , Isquemia Encefálica/complicaciones , Ácidos Docosahexaenoicos/metabolismo , Proteína Doblecortina , Infarto de la Arteria Cerebral Media/complicaciones , Infarto de la Arteria Cerebral Media/patología , Masculino , Neovascularización Fisiológica/efectos de los fármacos , Regeneración Nerviosa/efectos de los fármacos , Neurogénesis/efectos de los fármacos , Permeabilidad , Ratas Sprague-Dawley , Accidente Cerebrovascular/complicaciones , Análisis de Supervivencia
15.
Sci Adv ; 3(9): e1700735, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28959727

RESUMEN

We report the characterization of a novel class of lipid mediators termed elovanoids (ELVs) (ELV-N32 and ELV-N34), which are dihydroxylated derivatives of 32:6n3 and 34:6n3, respectively. The precursors of ELVs are made by elongation of a 22:6n3 fatty acid and catalyzed by ELOVL4 (elongation of very-long-chain fatty acids-4). The structure and stereochemistry of ELVs were established using synthetic compounds produced by stereocontrolled total synthesis. We report that ELV-mediated protection is induced in neuronal cultures undergoing either oxygen/glucose deprivation or N-methyl-d-aspartate receptor-mediated excitotoxicity, as well as in experimental ischemic stroke. The methyl ester or sodium salt of ELV-N32 and ELV-N34 resulted in reduced infarct volumes, promoted cell survival, and diminished neurovascular unit disruption when administered 1 hour following 2 hours of ischemia by middle cerebral artery occlusion. Together, our data reveal a novel prohomeostatic and neuroprotective lipid-signaling mechanism aiming to sustain neural cell integrity.


Asunto(s)
Homeostasis/efectos de los fármacos , Neuronas/efectos de los fármacos , Neuronas/fisiología , Fármacos Neuroprotectores/farmacología , Animales , Astrocitos/efectos de los fármacos , Astrocitos/metabolismo , Biomarcadores , Barrera Hematoencefálica/metabolismo , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Femenino , Imagen por Resonancia Magnética , Estructura Molecular , Fármacos Neuroprotectores/química , Embarazo , Células Piramidales/efectos de los fármacos , Células Piramidales/metabolismo , Ratas , Receptores de N-Metil-D-Aspartato/metabolismo , Estereoisomerismo , Accidente Cerebrovascular/tratamiento farmacológico , Accidente Cerebrovascular/etiología , Accidente Cerebrovascular/metabolismo , Accidente Cerebrovascular/fisiopatología
16.
Cell Death Differ ; 24(6): 1091-1099, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28430183

RESUMEN

Ring finger protein 146 (Iduna) facilitates DNA repair and protects against cell death induced by NMDA receptor-mediated glutamate excitotoxicity or by cerebral ischemia. Neuroprotectin D1 (NPD1), a docosahexaenoic acid (DHA)-derived lipid mediator, promotes cell survival under uncompensated oxidative stress (UOS). Our data demonstrate that NPD1 potently upregulates Iduna expression and provides remarkable cell protection against UOS. Iduna, which was increased by the lipid mediator, requires the presence of the poly(ADP-ribose) (PAR) sites. Moreover, astrocytes and neurons in the penumbra display an enhanced abundance of Iduna, followed by remarkable neurological protection when DHA, a precursor of NPD1, is systemically administered 1 h after 2 h of ischemic stroke. These findings provide a conceptual advancement for survival of neural cells undergoing challenges to homeostasis because a lipid mediator, made 'on demand,' modulates the abundance of a critically important protein for cell survival.


Asunto(s)
Isquemia Encefálica/metabolismo , Ácidos Docosahexaenoicos/metabolismo , Estrés Oxidativo , Transducción de Señal , Accidente Cerebrovascular/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Isquemia Encefálica/fisiopatología , Línea Celular , Regulación de la Expresión Génica , Humanos , Neuronas/metabolismo , Neuronas/fisiología , Accidente Cerebrovascular/fisiopatología , Ubiquitina-Proteína Ligasas/genética , Regulación hacia Arriba
18.
Sci Rep ; 6: 30298, 2016 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-27444269

RESUMEN

Temporal lobe epilepsy or limbic epilepsy lacks effective therapies due to a void in understanding the cellular and molecular mechanisms that set in motion aberrant neuronal network formations during the course of limbic epileptogenesis (LE). Here we show in in vivo rodent models of LE that the phospholipid mediator platelet-activating factor (PAF) increases in LE and that PAF receptor (PAF-r) ablation mitigates its progression. Synthetic PAF-r antagonists, when administered intraperitoneally in LE, re-establish hippocampal dendritic spine density and prevent formation of dysmorphic dendritic spines. Concomitantly, hippocampal interictal spikes, aberrant oscillations, and neuronal hyper-excitability, evaluated 15-16 weeks after LE using multi-array silicon probe electrodes implanted in the dorsal hippocampus, are reduced in PAF-r antagonist-treated mice. We suggest that over-activation of PAF-r signaling induces aberrant neuronal plasticity in LE and leads to chronic dysfunctional neuronal circuitry that mediates epilepsy.


Asunto(s)
Epilepsia del Lóbulo Temporal/tratamiento farmacológico , Epilepsia del Lóbulo Temporal/metabolismo , Factor de Activación Plaquetaria/metabolismo , Glicoproteínas de Membrana Plaquetaria/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animales , Plaquetas/metabolismo , Espinas Dendríticas/metabolismo , Espinas Dendríticas/patología , Modelos Animales de Enfermedad , Epilepsia del Lóbulo Temporal/genética , Epilepsia del Lóbulo Temporal/patología , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Hipocampo/patología , Humanos , Lóbulo Límbico/metabolismo , Lóbulo Límbico/patología , Ratones , Plasticidad Neuronal/efectos de los fármacos , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Neuronas/patología , Factor de Activación Plaquetaria/genética , Glicoproteínas de Membrana Plaquetaria/antagonistas & inhibidores , Glicoproteínas de Membrana Plaquetaria/genética , Receptores Acoplados a Proteínas G/antagonistas & inhibidores , Receptores Acoplados a Proteínas G/genética
19.
J Neurotrauma ; 32(14): 1101-8, 2015 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-25669448

RESUMEN

Recent studies show that myosin light chain kinase (MLCK) plays a pivotal role in development of cerebral edema, a known complication following traumatic brain injury (TBI) in children and a contributing factor to worsened neurologic recovery. Interferon-stimulated gene 15 (ISG15) is upregulated after cerebral ischemia and is neuroprotective. The significant role of ISG15 after TBI has not been studied. Postnatal Day (PND) 21 and PND24 mice were subjected to lateral closed-skull injury with impact depth of 2.0 or 2.25 mm. Behavior was examined at 7 d using two-object novel recognition and Wire Hang tests. Mice were sacrificed at 6 h, 12 h, 24 h, 48 h, 72 h, and 7 d. ISG15 and MLCK were analyzed by Western blot and immunohistochemistry, blood-brain barrier (BBB) disruption with Evans Blue (EB), and cerebral edema with wet/dry weights. EB extravasation and edema peaked at 72 h in both ages. PND21 mice had more severe neurological deficits, compared with PND24 mice. PND24 mice showed peak ISG15 expression at 6 h, and PND21 mice at 72 h. MLCK peaked in both age groups at 12 h and co-localized with ISG15 on immunohistochemistry and co-immunoprecipitation. These studies provide evidence, ISG15 is elevated following TBI in mice, preceding MLCK elevation, development of BBB disruption, and cerebral edema.


Asunto(s)
Barrera Hematoencefálica/metabolismo , Edema Encefálico/metabolismo , Lesiones Encefálicas/metabolismo , Citocinas/metabolismo , Animales , Barrera Hematoencefálica/patología , Edema Encefálico/genética , Edema Encefálico/patología , Lesiones Encefálicas/genética , Lesiones Encefálicas/patología , Citocinas/genética , Ratones , Quinasa de Cadena Ligera de Miosina/metabolismo , Ubiquitinas/genética , Ubiquitinas/metabolismo , Regulación hacia Arriba
20.
Exp Transl Stroke Med ; 7(1): 3, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25642315

RESUMEN

BACKGROUND: Ischemic brain injury disrupts the blood-brain barrier (BBB) and then triggers a cascade of events, leading to edema formation, secondary brain injury and poor neurological outcomes. Recently, we have shown that docosahexaenoic acid (DHA) improves functional and histological outcomes following experimental stroke. However, little is known about the effect of DHA on BBB dysfunction after cerebral ischemia-reperfusion injury. The present study was designed to determine whether DHA protects against BBB disruption after focal cerebral ischemia in rats. METHODS: Physiologically-controlled SD rats received 2 h middle cerebral artery occlusion (MCAo). DHA (5 mg/kg) or vehicle (saline) was administered I.V. at 3 h after onset of MCAo. Fluorometric quantitation of Evans Blue dye (EB) was performed in eight brain regions at 6 h, 24 h or 72 h after MCAo. Fluorescein isothiocynate (FITC) - dextran leakage and histopathology was evaluated on day 3 after stroke. RESULTS: Physiological variables were stable and showed no significant differences between groups. DHA improved neurological deficits at 24 h, 48 h and 72 h and decreased EB extravasation in the ischemic hemisphere at 6 h (by 30%), 24 h (by 48%) and 72 h (by 38%). In addition, EB extravasation was decreased by DHA in the cortex and total hemisphere as well. FITC-dextran leakage was reduced by DHA treatment on day 3 by 68% compared to the saline group. DHA treatment attenuated cortical (by 50%) and total infarct volume (by 38%) compared to vehicle-treated rats on day 3 after stroke. CONCLUSIONS: DHA therapy diminishes BBB damage accompanied with the acceleration of behavioral recovery and attenuation of the infarct volume. It is reasonable to propose that DHA has the potential for treating focal ischemic stroke in the clinical setting.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...